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INTRODUCTION   Non-Cartesian parallel imaging has been widely used since the innovation of conjugate gradient SENSE (CG-SENSE) 
reconstruction algorithm (1). Recently, several k-space reconstruction methods have also been developed for non-Cartesian trajectories (2-4). In most of 
these methods, each Cartesian k-space sample is synthesized one by one by linearly combining some acquired samples. Here we present a novel iterative 
reconstruction approach, in which we compute all missing interleaved non-Cartesian samples while assuring the consistency of all acquired samples at 
the same time. This method is based on our recently developed method for Parallel Reconstruction Using 
Null Operations (PRUNO) that has been applied for Cartesian trajectory. Here we demonstrate an algorithm 
for non-Cartesian Parallel Reconstruction Using Null Operations (NC-PRUNO). Although we demonstrate 
NC-PRUNO here by using variable density spiral (VDS) trajectories, it can also be applied to any other 
interleaved trajectory such as radial when data calibration is available.  

 

METHODS   In parallel imaging, due to the smoothness of coil sensitivity profiles, nearby k-space 
samples from multi-channels are highly correlated. Approximately, a certain subset of local neighbors may 
exhibit a linear dependence that is also shift invariant. Thus, there exists a non-zero linear operator, which 
nulls the corresponding subset of local samples. As in other auto-calibration based methods, we assume that 
a fully sampled k-space region is available. Then by choosing different neighbor templates, we can obtain 
multiple null operators from data calibration. In PRUNO, by using multiple null operators, the image 
reconstruction can be formulated as an overdetermined linear equation 0=Nx . [1] 
Here N is a sparse encoding matrix which concatenates all null operators and x is the vectorized desired 
full-grid multi-coil k-space data. There are many options on how to choose a set of neighbor templates. One 
good choice is to simply use a set of GRAPPA operators (7) by setting the coefficient of each target sample 
as -1. If we approximate the relationship between Cartesian samples and non-Cartesian samples using 
gridding, we can obtain 0=NGd [2], where G is another sparse encoding matrix corresponding to 
gridding and d is a vector concatenated with “full” interleaved non-Cartesian samples. By doing proper 
permutation, we can decompose Eq [2] as  
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Here the two subscripts m and a represent missing and acquired, respectively. Obviously, the goal of the 
reconstruction is to solve dm, and the final system equation turns to be 
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Since our null operators are simply composed of convolutions and additions, this equation can be solved 
effectively by using a conjugate gradient method, which is similar to a CG- SENSE reconstruction. An 
iterative reconstruction scheme is shown in Fig 1. After solving the system, an image for each coil can be reconstructed by doing gridding and the final 
image can be obtained by using sum-of-squares. 

 

RESULTS   Our method has been applied to both in-vivo and simulated data. We used 8 coil channels for both experiments. VDS trajectories were 
used here with a reduction factor of two. Fig 2 compares the sum-of-square reconstructions between direct regridding and NC-PRUNO. Fig 3 shows the 
CG iterating progress for a NC-PRUNO reconstruction. 
 
DISCUSSION AND CONCLUSION   Here we have demonstrated a k-space 
iterative non-Cartesian parallel imaging method. The reconstruction is efficient 
since we don’t need to do multiple data calibrations for every Cartesian sample 
or for every block of samples. The algorithm is also very easy to implement. 
Another advantage of NC-PRUNO is that it truly maintains the consistency of 
all acquired samples. Due to the imperfection of gridding operations, the 
convergence of the algorithm can be slow or unstable as the image size gets 
larger. Proper regularization may be helpful to improve the performance and we 
are still investigating this problem. 
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Figure 1: The iterative algorithm for 
NC-PRUNO reconstruction. Here N and N*

represent null operation and its conjugate 
respectively. G is gridding and G* is 
inverse-gridding. Mask_M and Mask_A refer 
to masking out only missing samples or only 
acquired samples respectively.   

Figure 2: Reconstructed sum-of-square images. (a) shows the image 
reconstructed from direct regridding; (b) shows the image reconstructed 
from NC-PRUNO.   

Figure 3: NC-PRUNO reconstruction results at 
different iterations. 
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