
Fig.1 Comparison between SVD-based and 
SNR-based coil selection (16 out of 32). The 
mean normalized SNR for the 100 different 
coil configurations selected by both 
approaches shows their good correlation. 

Fig.2 In vivo experiments. Images, reconstructed with (a) 16 coils chosen out of 32 with the SNR-based coil selection 
algorithm, (b) 16 coils chosen with the SVD-based coil selection algorithm, (c) the full set of 32 coil elements The 
mean normalized SNR values are given on the lower left of each image. 
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Introduction  
Parallel imaging using coil arrays with large number of receive elements allows improved imaging performance and increased SNR [1, 2]. However, 
the use of a large number of coil elements can lead to memory storage problems and to increased reconstruction times. Several techniques for data 
reduction were presented, realized either by linear combination of the original coil data or by discarding particular data from unimportant coils 
elements [3-5]. In this work, we focus on coil selection and present an efficient approach applicable to massively parallel SENSE imaging.   
Methods  
An appropriate criterion for a coil subset selection should refer to the image quality if an image is acquired 
with a given coil configuration. One such quality measure is the signal-to-noise-ratio (SNR). The SNR in 
parallel imaging is spatially variable, so local SNR optimization will lead to a different coil configuration 
for each pixel. A more global quality characteristic is the mean SNR. The optimal coil set can be found by 
performing an exhaustive search through all possible coil subsets and selecting the set with highest mean 
SNR, but the number of possible coil combinations makes this problem computationally challenging.   
The SENSE reconstruction of uniformly undersampled Cartesian data consists of solving a linear system of 
L equations with R variables, where L is the number of coil elements and R is the reduction factor. The 
reconstruction problem could be solved by means of singular value decomposition (SVD). The data a and 
the sensitivity S are projected from the L to an R dimensional space Paa'= , PSS'=  and the problem is 
solved in this lower dimensional space. The projection matrix can  be given as P = UH, where U comes 
from the SVD of the sensitivity matrix S = UΣVH. The coil sensitivities in the R-dimensional space can be 
considered as coil sensitivities of R virtual coils [6]. If the best subset of a given coil set has to be selected, 
the upper SNR limit would be given by the full coil set. So, finding those coils that have the most similar 
projection on the R-dimensional problem space to the projection of the full coil set will result in an optimal 

SNR coil configuration. The i-th row 
vector of S’ can be written as a linear 
combination of the rows of S 

∑=
k kiki sp's  , where the weighting 

factors P(i,k) = pik  are the i-th row entries 
of  the projection matrix P. The magnitude 
of pik represents the contribution of the k-
th physical coil to the i-th virtual coil. The 
coil array elements can be ranked 

according to the weighting function:            
This allows a single step coil selection using the SVD of the sensitivity matrix, which we will denote as the SVD-based 
coil selection.  

To validate the performance of the method, it should be compared with the results of the exhaustive search. However, the number of possible coil 
combinations makes this task impossible. A faster search using a sequential backward elimination [7] allows the selection in manageable times. We 
will denote this algorithm as the SNR-based coil selection method and will use it as a reference. 
Results and Discussion 
To evaluate the performance of the SVD-based coil selection, simulations with 100 different coil arrays selecting 16 out of 32 coil elements have 
been performed, which are summarized in Fig 1. A very nice correlation with the SNR-based coil selection is shown. The SVD-based coil selection 
algorithm was further demonstrated for in-vivo measurements for the selection of 16 out of 32 coil elements. All measurements were performed on a 
1.5T clinical scanner (Philips Medical Systems) equipped with a 32-element coil array. 2D in-vivo images were acquired with SENSE (R=2) in AP 
(TE = 1.5 ms, TR = 3 ms, balanced FFE, α = 60˚, FOV = 410×410 mm2, matrix size 288×288 and slice thickness 7 mm). Fig.2 (a), (b) show the 
images obtained with 16 coils selected with the SNR-based and SVD-based coil selection algorithms, respectively. Both algorithms resulted in 
similar coil selection pattern, and the resulting images show only small decrease in SNR compared with the image obtained with the full set of 32 
coils (Fig. 2 (c)). The computation time for the SVD-based algorithm was tsvd = 0.02s and for the SNR-based coil selection tsnr = 160 s (Xeon, cpu 2,4 
GHz, 4GByte memory), which underlines the applicability of the SVD-based coil selection in clinical practice.  
Conclusion 
The SVD-based coil selection algorithm allows fast coil selection with a performance, comparable with the more accurate, but computationally 
intensive SNR-based coil selection. It can be used instead of manual coil selection in conventional scan planning and is especially useful in planning 
double oblique SENSE scans. It is also applicable to various applications such as real-time or interventional imaging, where the selection could be 
performed locally for each slice enabling dynamical coil switch during image acquisition. 
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