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Introduction: Although modern MR scanners produce highly homogeneous fields, this feature is often more than counterbalanced by the increased 
susceptibility artifacts at higher field strengths (>=3T). Therefore the scanners are equipped with a large set of so-called shim coils which can be used for 
reversing the effects of the inhomogeneities. The process of finding the right parameters for the coil adjustment is termed “shimming”. Different 
shimming methods have been proposed, depending on the accuracy, i.e. order ([1]), ranging from acquisitions of projections along the three axes ([2-4]) 
for the linear case, or along selected diagonals ([5]) for additional second orders, to full 3D field maps. We will here present a proof of principle of a new 
method for determining the coefficients of field inhomogeneities which benefits from the increased trend not only to higher field strengths, but to a higher 
number of receiver coils as well. The technique can be seen as a special case of the SENSE parallel imaging method ([6]) and will therefore be 
introduced here as SENSH (SENse SHimming). 
Methods: Modern routine receiver coils consist of arrays of 12 elements or more; head-arrays with 192 elements have been presented. As has been 
shown by Pruessmann et al. in ([6]), the spatially varying sensitivity of the individual elements can be used as additional spatial encoding information. 
This allows for reducing the amount of needed frequency and phase encoding steps while maintaining the maximum k-space values; thus the acquisition 
time can be shortened by a so-called reduction factor R. The resulting fold-overs can be resolved by reconstructing separate images for the coil 
elements and using the previously measured sensitivities for unfolding. 
The method to be presented here is a special case of this setup: we abstain completely from using traditional frequency and phase encoding, thus 
obtaining a fold-over of all pixel into one, i.e. a FID. Knowing the sensitivity information and spin density, basis functions corresponding to fields 
generated by shim coils can be fitted as will be shown in the following: 
The signal received in channel n without encoding at time t can be described as follows: 
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Knowing ρ
v

0'( , )n r t  for a given 0t would thus allow for estimating the FID signal at time + Δ0t t . Fortunately ρ
v

0'( , )n r t  can be interpreted as the 

reconstructed image for coil n for a GRE sequence with = 0TE t ; no true sensitivity map acquisition and calculation is therefore needed. The alternative 

is to set =0 0t , i.e. to acquire the FID signal early enough after the excitation to still fulfil the approximation of a small phase change. This implies use of 

non-selective excitation pulses, and receiver coils with a sufficiently high number of elements distributed 
in 3D. Calculating the derivative of equation (2) yields 

 ρ ω− Ψ + Δ − Ψ Δ = Τ = ∫
v v

0 0( ( ) ( )) / '( ) ( )n n n n
dV

i t t t t r r  (3) 

For discrete image slices this can be rewritten with matrices and solved in a least square sense: 

ν−= 1[ ' ] 'u C C C , with =C PB , B being the matrix consisting of basis functions, P a matrix with the 

measured image data and ν a vector with the Τn ; u is a vector containing the coefficients. It is obvious, 

that the approximation of the exponential function in equation (2) will be equal to unity for Δ = dwellt T , with 

the dwell time dwellT  in the order of microseconds and for small inhomogeneities; in this case the 

derivative in equation (3) is dominated by noise. Δt  has therefore to be chosen with care, in order to 
obtain sufficiently high signal in equation (3) and still fulfil the approximation condition. In the discrete 
case = Δt f t , with f being a scaling factor. 
Results & Discussion: For demonstration purposes a 12 channel head array with a circular alignment 
of elements was used; the following simulations and experiments are therefore restricted to the in-plane 
case. In the simulations, using the presented framework, P was set to data obtained with the mentioned 
coil from a FLASH measurement with = 3TE ms . Setting Δ = = 0.0078dwellt T ms and simulating a 

gradient of 4µT/m, Figure 1 shows the importance of choosing a good temporal scaling factor f in the 
presence of noise (f ranges from 30 to 230, SNR from 20*1e6 to 3*1e5). In a next step phantom 
experiments were carried out with the mentioned FLASH sequence and deactivated frequency and 
phase encoding gradients. The shim settings were purposely altered (in 1µT/m steps: X=-3..3 and Y=-
3..3); in order to account for the necessary scaling factor, the derivative was calculated over ±110 FID 
points taken from one line. The results are shown in Figure 2. 
Keeping in mind, that this is only a proof of principle and that results should improve with an increasing 
number of coil elements, it is to be expected, that results can still be improved significantly. 
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Figure 1: The six lines represent from bottom to 
top scaling factors from 30 to 230, with a 
simulated gradient of 4µT/m. Shown is the 
respectively calculated gradient in dependency of 
SNR (decreasing from left to right, from 20*1e6 
to 3*1e5). 

 
Figure 2: Applied versus measured gradients for 
a phantom experiment; a high linearity is given in 
both axes. 
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