
Transmit B1 Shimming at High Field with SAR Constraints: A Two Stage Optimization Method Independent of The Initial 
Set of RF Phases and Amplitudes 

 
T-H. Chang1, Z-Q. Luo1, X. Wu2, C. Akgun2, T. Vaughan2, K. Ugurbil 2,3, and P-F. Van de Moortele2 

1Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States, 2Center for Magnetic Resonance Research, University 
of Minnesota Medical School, Minneapolis, MN, United States, 3Max Planck Institute for Biological Cybernetics, Tuebingen, Germany 

 
Introduction: There has been an increasing interest in constraining transmit B1 shimming with specific absorption rate (SAR) limits [1-2], especially at high magnetic 
field. Since most of the existing methods rely on solving a nonconvex optimization problem, they are typically faced with two difficulties: Only local optimum solutions 
are obtained, and they are susceptible to the chosen initial points for optimization. Here we introduce a two stage optimization method where a reliable initial point is 
acquired in the first stage by a convex semidefinite relaxation (SDR) approximation method. A high quality B1 shimmed map then can be obtained in the second stage 
optimization using the SDR initial points. The presented technique is verified with simulations for a 16-channel transmit coil array at 7T with a human head model.  
Proposed Method: Denote by  the complex vector where each entry defines the magnitude and phase of each RF coil. Let                                             where               
                represents the B1 field magnitude and phase at sample  due to the th RF coil. Then the B1 
field magnitude at the th sample is given by      . By defining a B1 target map with uniform 
magnitudes at each sample (i.e., pixel) equal to , we consider the following optimization problem 
for homogeneous B1 shimming with an average SAR constraint  

          
where  denotes the number of samples in the B1 map,   is a preset number, and  denotes 
the average SAR in which  is composed of the complex valued E field coefficients, and of 
the tissue conductivity and mass density [3].  It can be seen from (1) that the proposed criterion tries to 
make the combined map as uniform and as close to the target map as possible. Since problem (1) is a 
nonconvex problem, usually a local minimum solution is obtained and it is highly dependent on the 
chosen initial points.  Here we present a two stage optimization method for (1) in which a reliable 
initial point is first obtained in the first stage through a SDR approximation method (see Fig. 1). To 
illustrate this, let us define  [which is equivalent to  (Hermitian and positive 
semidefinite) and                  ]. By writing problem (1) in terms of  and dropping the nonconvex 
rank-1 constraint, one can obtain the following SDR of problem (1)  

         
Different from problem (1), the relaxation problem (2) can be shown to be a convex optimization 
problem and can always be efficiently solved with global minima. The comparison of problems (1) 
and (2) is summarized in Table I. Let  be the optimum solution of problem (2). An 
approximate solution of problem (1) based on  can be obtained by the following randomization 
procedure: We generate  random vectors , from the complex Gaussian 
distribution .  Let      
  

   

             
An approximate solution of problem (1) can be 
obtained by . This approximate 
solution however can be taken as an initial 
point of problem (1) for further optimization, 
and thus we propose in the second stage to 
solve problem (1) using nonlinear 
programming techniques, as illustrated in Fig. 
1. It might be argued that an initial point of 
problem (1) can be obtained by randomly 
generating a set of feasible vectors from the 
distribution , and choosing the one 
with minimum objective value. This ad-hoc 
method is similar to the above randomization 
procedure, but the covariance matrix of the complex Gaussian distribution is replaced by the 16 by 16 identify matrix. It will be demonstrated in our simulations that the 
initial points obtained from the SDR method are actually more reliable compared to the ad-hoc random initializations.   
Simulation Results and Discussions: In our simulations, the coil used in the model is a 16-element RF strip line coil array [5] mounted on a cylindrical former of 
32cm in diameter and loaded with a human head. The B1 and E field maps in the brain were simulated with the XFDTD software (REMCOM Inc.). The SeDuMi [6] 
was employed to solve problem (2), while problem (1) in the second stage was solved by the optimization routine provided in MATLAB (MathWorks Inc.). The 
number of randomization vectors was set . Figure 2 shows the results for (a) non-optimized weights, i.e.,  (corresponding to the 
geometric azimuthal phase distribution for 16 channels) and for (b) optimized weights for average SAR constraint  and the magnitude of target map  equal to 
the mean value of B1 magnitudes in Fig. 2(a). The optimized weights in Fig. 2(b) were scaled such that the mean value of associated B1 magnitudes is equal to that in 
Fig. 2(a). It can be seen that a more uniform B1 magnitude map is obtained while the SAR is significantly reduced (compared to non-optimized result in Fig2 (a)). To 
demonstrate the robustness of the SDR initializations, we compared it with the ad-hoc random initialization method by performing 100 trials of simulation using 
different seed settings in each trial for the random vector generation. Figure 3 shows the corresponding distributions of (a) the homogeneous coefficient (defined as the 
ratio of standard deviation and the mean value of B1 magnitudes), (b) the flatness coefficient (defined as the ratio of the difference between the maximum and the 
minimum B1 magnitudes and the mean value of B1 magnitudes) and (c) the mean value of B1 magnitudes under average SAR constraint . One can see that for 
the SDR initialization there is at least 95% probability to obtain a shimmed B1 map with flatness coefficient less than 1.25. In conclusion, the presented optimization 
criterion in (1) together with the proposed two stage optimization method provides a new B1 shimming technique which features its insensitivity to the initial points 
while high quality B1 shimming can be achieved.  References: [1] A. T. Cornelis, et al., MRM 2007, 57:577-586. [2] Z. Wang, et al., ISMRM 2007, p.1022. [3] Y. Zhu, 
MRM 2004, 51:775-784. [4] S. Boyd et al., Convex Optimization, Cambridge, Univ. Press  2004. [5] G. Adriany, et al., MRM 2005, 53(2):434-445. [6] J. F. Sturm, Opt. 
Methods. and Software 1999, 11-12:625-653.  Acknowledgements:  U.S. NSF Grant DMS-0610037, R01-MH070800, and BTRR-P41-RR008079, P30-NS057091. 
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Fig. 3 Distributions of (a) homogeneous coefficient (b) flatness coefficient and (c) mean value of optimized B1 maps 
using SDR initializations and using randomly generated initial points. 
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Fig. 2 B1 magnitude maps (Left)  
and SAR maps (Right) of (a) non-
optimized weights and of (b)  
optimized weights for  
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Fig. 1 Block diagram of 
the proposed two stage 
optimization method 

Table I Comparison of problems (1) and (2)  
Problem (1) nonconvex and has many local minima The optimized results depend on 

the chosen initial points. 
Problem (2) 1. convex and only has global minima 

2. efficiently solvable by interior point methods [4]. 
The initial points do not affect the 
optimized results. 
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