Estimating Specific Absor ption Rate (SAR) during MRI in the human brain with intracranial EEG electrodes used for
epilepsy monitoring: A preliminary study using finiteintegral technique (FIT) modelling.
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Introduction MRI is advantageous for localising intracranial EEG electrodes used for epilepsy monitoring due to good visualisation of implant
position relative to the neuroanatomy and the avoidance of the radiation dose associated with CT. However, RF-induced increased heating around such
implants poses a potential health hazard™.

Methods Simulations were performed using a commercial software package, the Transient Solver was used to solve the electromagnetic
problem within CST Microwave Studio® v2006B (Computer Simulation Technology, Darmstadt, Germany). This provides a solution to the time-
dependent Maxwell's equations using a time-domain variant of the finite integration technique®® (FIT). FIT uses the integral forms of Maxwell's equations,
and transforms them into a set of matrix equations to obtain E (V m’l), the electric field strength, and B (T) the magnetic flux density, H (A m’l). Specific
absorption rate (SAR) was then calculated using the software’s IEEE C95.3 averaging method over both 1g and 10g of tissue from the power loss
density at 62.5MHz with 1W peak input power. The model consisted of three main parts: 1) a generic design 16 rung birdcage head transmit RF-coil with
internal diameter of 280 mm and length 300mm. The end rings were 10 mm wide, 90.5pF capacitors were inserted in 5mm gaps equi-distant from each
rung; this tuned the coil to have a principal resonance at the approximate frequency of a 1.5T scanner (62.5MHz). In two of these gaps at 135° and 225°
relative to the vertical (y) axis the coil was driven by application of a voltage in quadrature; 2) a head-torso model was used of resolution 1.66x1.66x2mm
derived from imaging a 23 year-old male and segmenting the images into 32 different tissue types®. Each tissue was assigned density, permittivity, and
conductive properties (calculated using http://www.fcc.gov/fec-bin/dielec.sh and http://niremf.ifac.cnr.ititissprop/htmiclie/htmiclie.htm)*; 3) an implant
approximating an Ad-tech (Racine, WI, USA) electrode grid (a 6x8 array of 3mm diameter Pt-Ir disk contacts with 10mm spacing within a silicon sheet,
and tails (1 per row of contacts) comprising of 0.1mm stainless steel (316) wires and Ni-Cr tail contacts contained within polyurethane tubing, total length

455mm). The implant was positioned to lie at the brain surface over the left Mass SAR
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Figure 1 Simulation results: a) The E-field at plane x=-68mm adjacent to the grid electrodes with peak E-field around the coil, at the
grid corners and around the wires before they enter the head, b) SAR-1g, same plane as in ‘a’ (x=-68mm) peaking at the anterior-distal
contact, ¢) SAR-1g, at z=8mm perpendicular to distal grid contacts with a peak near the electrodes but maximum in the sinus area.

Discussion The E-field was strongly coupled to the implant and was focused around the distal electrode contacts causing
increased local values. However, while the SAR was increased in tissue surrounding the implant the maximum local SAR value was in
the same area as for the un-implanted case, even when averaged over 1g of tissue. These results suggest that despite the large
increases in local E-field, the relatively small volume over which this increase takes place results in modest local SAR increase
averaged over 1g of tissue (the lower mass limit specified in the regulations). The mass over which very high E-fields can be tolerated
without leading to highly localised damage is unclear and is likely to be dependant on other factors such as perfusion within that area.
These preliminary results were generated using complex models, thus making accuracy difficult to determine. However, in vitro
experimentation has shown highly localised heating consistent with the results herein®. Further work is needed to validate and extend
these results including normalising the results to produce a particular B; within the centre of the head which is what an MRI scanner
would do in practice (potentially altering coil input power).
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