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Introduction:  
It has been suggested that cardiac dysfunction is related to the mechanical properties of the myocardium and that knowledge of this parameter could 
provide insight into a variety of diseases such as diastolic dysfunction [1], hypertension [2] and myocardial ischemia [3].  However, the ability to quantify 
myocardial tissue mechanical properties in vivo is currently limited. Our group has developed a noninvasive phase-contrast based MR imaging 
technique known as MR elastography (MRE) [4] that is capable of spatially resolving the shear modulus μ of tissue-like materials. Existing methods for 
calculating μ generally assumes  that the shear wave is propagating in a uniform, infinite medium [5]. However, this assumption is not valid in the heart 
because of the heart’s complex geometry - a fluid-filled chamber with comparatively thin walls. The purpose of this work is to propose a new MRE based 
method for estimating μ that includes boundary condition effects similar to those encountered within the heart based on shear wave propagation within a 
thin spherical shell. 
Theory:  
Shear Wave Propagation in a Thin Spherical Shell: The 
vibrations of a spherical shell include both membrane and 
flexural effects that result in wave propagation guided by the 
boundary conditions of the object. The equations of motion can 
be obtained by applying Hamilton’s variational principle [6] and 
by assuming midsurface deflections and nontorsional 
axisymmetric motions. Expressed in the polar coordinate system 
these equations are described by Eqs. 1 and 2 where a = radius, u = circumferential component of displacement, w = radial component of displacement, 
cp= flexural wave speed, β =h2/12a2, h=thickness of the shell, pa=applied load, and E = Young’s modulus. If the circumferential and radial displacements 
are known, Eqs. 1 and 2 can be solved for cp. The shear modulus of the material can then be calculated according to the relationship: μ = 0.5*(1-ν)ρcp

2 , 
where ρ = density and ν = Poisson’s ratio.  
In this application MRE techniques were used to quantify and spatially resolve the circumferential and radial components of a propagating wave in thin 
spherical shell phantoms, and then solve for μ using the aforementioned techniques.  
Methods: 
Phantom Experiments: Two spherical phantoms were constructed using silicone rubber (Wirosil, BEGO, 
Germany) poured as spherical shells of varying thicknesses and inner diameters (98mm, 100 mm diameter 
with thicknesses of 13.5 mm and 17 mm, respectively). MRE was performed on each shell, connected to a 
static pressure source and imaged on a 1.5T MR scanner (GE Health Care, Waukesha, WI). External 
motion was applied using an electromechanical tapper applied to the top of the phantom and driven by a 
sinusoidal waveform at 200 Hz. A gradient echo MRE acquisition was performed with TR/TE =150/16 ms, 
FOV = 140 mm, 30° flip angle, 10-mm slice thickness, and a 256x64 acquisition matrix.  The horizontal and 
vertical components of the induced wave motion were measured during the MRE acquisition. These were 
then transformed into their radial and circumferential components for use in Eq. 2 using a Cartesian-to-
polar coordinate conversion that assumes the center of the coordinate system to be at the centroid of the 
acquired phantom images. The displacement fields were then processed for cp using a direct inversion of 
Eq. 2 and assuming the load pa to be negligible. Derivative estimates were provided by Savitsky-Golay 
filters [7] fit to data in adaptive windows conforming to the boundary of the object and approximately half of 
the flexural shear wave length. After spatially resolving cp, μ was calculated as above.  
Computer Simulation: To determine whether or not the aforementioned MRE-based approach can 
accurately map the circumferential and radial components of the propagating shear wave as described in 
Eqs. 1 and 2, an average value of μ was calculated from the MRE-derived shear stiffness map for the 98 
mm inner diameter phantom. cp was calculated from this value which was then input into previously derived 
solutions to Eqs. 1 and 2 under the conditions of forced axisymmetric nontorsional vibrations [6], providing 
radial and circumferential displacement fields. The MRE-derived and simulated displacement fields were 
then compared to determine the degree of agreement between the measured and theoretically predicted 
displacement values.  
Results:  
Figure 1(a) shows the radial component of the flexural wave displacement field for the 17 mm thick shell. 
Figure 1(b) shows the shear modulus calculated by solving Eq. 2 for this shell. Figure 1(c) shows the radial 
component of the flexural wave displacement field for the 13.5 mm shell and figure 1(d) shows the 
calculated shear stiffness map. The mean shear stiffness of these phantoms was calculated to be 65±17 
kPa and 71±14 kPa for the 17 mm and 13.5 mm diameter shells respectively. Figure 2 compares the 
MRE-based measured and simulated displacement fields. The MRE-derived value of μ equal to 71 kPa 
was used to calculate a cp value of 16.85 m/s assuming ρ = 1000 kg/m3 and ν = 0.5. Figure 2(a) shows the 
radial component of the MRE measured displacement field and (b) shows the same displacement field 
derived from the solutions to Eqs. 1 & 2 [6] using the aforementioned parameters.  
Discussion: 
These preliminary results indicate that MRE-based techniques can be used to spatially resolve circumferential and radial displacements induced by 
propagating shear waves in a thin spherical shell, thereby facilitating a more accurate MRE-based method for assessment of shear modulus in organs 
whose geometry can be modeled as a shell-like object. The organs for which this model may be applied include the heart, the eye, and the bladder.   
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