
Figure 1 – The Kalman model 
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Introduction: Dynamic imaging reveals vital functional information on the object of interest. Such 
acquisitions, however, suffer from low SNR and low temporal resolution. To keep the temporal resolution at 
a reasonable value, longer readouts and fewer excitations are often employed, resulting in various flow and 
motion related artifacts. Previous works such as the UNFOLD[1], TSENSE[2] and kt-BLAST[3] work better 
on a Cartesian grid, thereby not taking advantage of the more desirable flow and motion characteristics of 
various non-Cartesian trajectories. We propose an algorithm addressing these shortcomings. It shares the 
same statistical flavor as kt-BLAST. We demonstrate 4x increase in the frame rate with better SNR and 
temporal response and a very short reconstruction time(essentially 2 gridding and 2 Fourier transform 
operations per frame) using spiral trajectories. We compare our algorithm with the sliding window 
reconstruction, which also provides a rapid reconstruction. 
Theory: We model the temporal variation of the heart with the following dynamic system [4]: 
                                       Sn = Sn-1 + Un,         Xn = Gn F Γ Sn + Wn. 
Here, Sn represents the true image at time n, and Gn, F and Γ denote the time-dependent gridding operator, 
the Fourier transform operator and deapodization operator, respectively. Un is the change in the image from 
time n-1 to n, and Wn is the observation noise with a covariance of Σ=σ2I. Xn denotes the raw data used for 
the nth frame. The quality of the reconstructions particularly depends on accurately characterizing the 
difference process Un. We employ the Kalman filter[5] on this model by sending one-fourth of the full data 
set for each frame and expecting the Kalman filter to resolve the resulting aliasings. 
Methods: The RTHawk real-time system[6] is used with both GRE and SSFP pulse sequences and in-vivo 
cardiac data is acquired by a single surface coil(3” coil for SSFP and 5” coil for GRE). Display FOV is 20 
cm with a resolution of 2 mm. No ECG-gating or breath-holding was used. Short scans of 10 seconds are 
used to estimate the necessary statistics. A small region around the center of the k-space(1% of total k-space) 
is fully sampled for each frame and is not sent to the Kalman filter. Since image correlations are mostly due 
to the very low spatial frequency content, the outer region will exhibit much reduced cross-correlations 
between pixels. Therefore, the time consuming matrix inversion of the Kalman filter becomes the easy task 
of inverting diagonal matrices by ignoring any residual cross-correlations. The inner trajectory is kept 
constant for all frames to get rid of flickering artifacts due to the rotation of residual aliasings, whereas the 
undersampled outer trajectory is rotated for each frame to cover the k-space. The outer part uses a linearly 
decreasing density spiral for SNR efficiency. Fig. 1 depicts a simplified system view of the reconstruction. 
Results: The left column of Fig. 2 shows 4 consecutive frames obtained by sliding window reconstruction, 
and the right column shows the corresponding frames obtained by Kalman filtering.(GRE excitation) The 
time between consecutive rows is 33.7ms.(~ 30 fps) In the left column, the sliding window is used only for 
the undersampled region for a fairer comparison. The right column has better SNR, as demonstrated by the 
reduced noise and the sharper structures in the background. More importantly, the Kalman reconstruction is 
much more responsive to the rapid valvular motion. Especially in the third row, the left frame is blurred by 
motion whereas the right frame maintains a sharp depiction of the valve.(arrows) Fig. 3 shows three 
consecutive frames from a similar experiment except that an SSFP pulse sequence is used. The top row 
shows the sliding window reconstruction and the bottom row shows the Kalman reconstruction. Due to 
practical limitations in the real-time system, there is a dead time in each TR, resulting in reconstructions 
running at 16 fps. Yet, the merit of the proposed algorithm is still demonstrated by the reconstructions. 

Conclusions: We demonstrated that the proposed technique is very responsive to changes in 
time-series data. Moreover, built-in denoising capability of the Kalman filter reduces the 
acquisition noise. Experiments show that the proposed technique allows for better tracking of 
fast moving structures, in particular the cardiac valves. 
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Figure 1 – A simplified view: The very center of the k-space is reconstructed conventionally 
and the remaining part is fed to the Kalman filter. These reconstructions are then combined 
by simple summation. The two trajectories(in-out) are connected in a time-optimal manner. 

Figure 3– Three consecutive frames from a cardiac experiment – 
Top row: Sliding window recon. Bottom row: Kalman recon. 48-
interleaf SSFP experiment, every 12 of 48 are input to the Kalman 
filter for a 4x recon. 

Figure 2 – Four consecutive frames from a cardiac 
experiment – Left column: Sliding window recon. Right 
column: Kalman recon. 8-interleaf GRE experiment, 
every 2 of 8 are input to the Kalman filter for a 4x recon. 
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