

## Tracking Chemotherapy-Induced Changes in Tumor Antigen Expression in a Pre-Clinical Breast Cancer Model

Z. Medarova<sup>1</sup>, L. Rashkovetsky<sup>1</sup>, P. Pantazopoulos<sup>1</sup>, and A. Moore<sup>1</sup>

<sup>1</sup>Molecular Imaging Laboratory, Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States

**Background.** A key goal of cancer research is to be able to monitor and predict the response to treatment. Considering the variability of the response, this has to be accomplished on a patient-by-patient basis. With this in mind, we applied magnetic resonance imaging to monitor the expression of a tumor-specific antigen (uMUC-1), found on over 90% of breast cancers and predictive of chemotherapeutic response. As a contrast agent, we employed an imaging probe (MN-EPPT) targeting uMUC-1. MN-EPPT consists of superparamagnetic iron oxide nanoparticles (MN) for MR imaging, modified with Cy5.5 dye (for fluorescence optical imaging), and conjugated to peptides (EPPT), specifically recognizing uMUC-1 (1,2).

**Methods and Materials.** *In vitro* studies. We treated BT-20 human breast adenocarcinoma cells with doxorubicin (0.4  $\mu$ M) or PBS, as a control, for 48-hrs. Following treatment, we incubated the cells overnight with either MN-EPPT or a scrambled control probe, MN-SCR (50  $\mu$ g Fe/ml). We analyzed probe uptake in MRI phantom studies. *In vivo* studies. We treated mice bearing orthotopic human breast carcinomas with doxorubicin (7mg/kg) or saline once a week over the course of two weeks. We performed magnetic resonance imaging (MRI) one day prior to the beginning and one day after the completion of treatment, before (pre-contrast) and 24 hrs after (post-contrast) i.v. injection of MN-EPPT or MN-SCR

(10mg Fe/kg). For both in vitro and in vivo imaging we used a 9.4T Bruker horizontal bore scanner (Billerica, MA) equipped with ParaVision 3.0 software. The imaging protocol consisted of transverse T2-weighted spin echo (SE) pulse sequences. To produce T2 maps for quantitative analysis of probe accumulation, the following imaging parameters were used: SE TR/TE = 3000/[8, 16, 24, 32, 40, 48, 56, 64]; FOV = 40 x 40 mm<sup>2</sup>; matrix size = 128 x 128; slice thickness = 0.5 mm; in-plane resolution = 312x312  $\mu$ m<sup>2</sup>.

**Results.** Treatment with doxorubicin in vitro led to downregulation of uMUC-1 expression in BT-20 cells. This change was reflected by a significant increase in the T2 relaxation times of the cells, when MN-EPPT was used as a contrast agent. The cellular uptake of MN-SCR was marginal and was not affected by treatment with doxorubicin (Figure 1A). In vivo, in mice injected with MN-EPPT, tumor delta-T2 was significantly reduced after treatment with doxorubicin, indicating a lower accumulation of MN-EPPT and reflecting the reduced expression of uMUC-1. In mice treated with saline or injected with MN-SCR as a contrast agent, delta-T2 values were not different before and after treatment with doxorubicin (Figure 1B and C).

**Summary.** These studies suggest that it is feasible to track changes in target antigen availability by MRI and illustrate the value of this approach for monitoring the progress of chemotherapy on a molecular scale. This approach may ultimately become applicable in a clinical setting and has the potential of

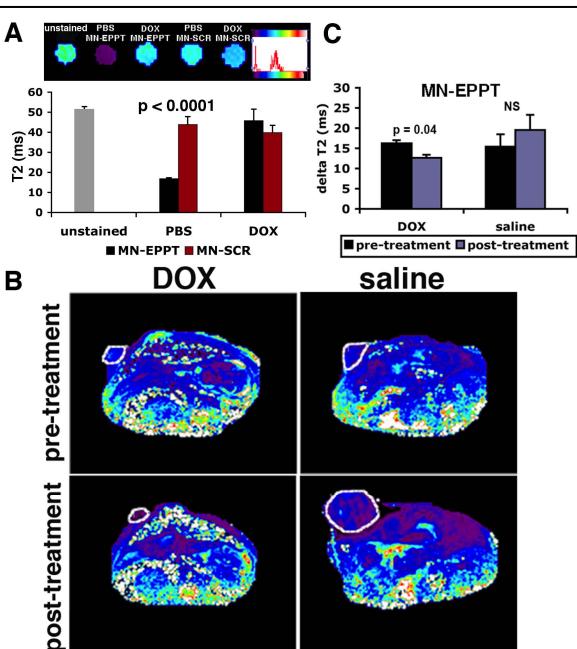



Figure 1 A. Phantom studies. B. Post-contrast MR images before and after treatment with DOX. C. Delta-T2 values before and after treatment with DOX.

significantly advancing our ability to better direct the development of molecularly-targeted individualized therapy protocols.

### References.

1. Moore A, Medarova Z, Potthast A, Dai G. In vivo targeting of underglycosylated MUC-1 tumor antigen using a multi-modal imaging probe. *Cancer Res* 2004;64:1821-1827.
2. Medarova Z, Pham W, Kim Y, Dai G, Moore A. In vivo imaging of tumor response to therapy using a dual-modality imaging strategy. *Int J Cancer*;2005;118(11):2796-2802.