Phosphorus MRS effectively monitors lentiviral-mediated gene therapeutic silencing of choline kinase in a human breast cancer xenograft

K. Glunde¹, B. Krishnamachary¹, F. Wildes¹, V. Raman¹, and Z. M. Bhujwalla¹

¹JHU ICMIC Program, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States

Introduction

Choline kinase (Chk), an enzyme that converts free choline to phosphocholine (PC), is overexpressed in several cancers, including breast cancer [1-2]. Chk contributes to the increased phosphocholine (PC) and total choline (tCho) levels in breast tumors, which can be detected by 1 H and 31 P magnetic resonance spectroscopy (MRS) [1-2]. Because Chk is associated with tumor aggressiveness, it can be used as a target for anticancer therapies using gene silencing by RNA interference [1]. We are currently developing systemic RNA interference-based anticancer therapies that target Chk for breast cancer treatment [3]. Because lentiviral vectors have emerged as vectors of choice for long-term, stable in vitro and in vivo gene transfer, we have generated an HIV-based lentivirus to target Chk in vitro and in vivo in MDA-MB-231 breast cancer cells and xenografts [3]. This lentivirus produces double-stranded short hairpin RNA (shRNA) specific to Chk (shRNA-chk), and efficiently transduces MDA-MB-231 breast tumor xenografts as previously shown [3]. Here we have utilized in vivo single-voxel ³¹P MRS to monitor the functional efficacy of lentiviralmediated Chk silencing following intravenous injection of this lentivirus in mice bearing MDA-MB-231 breast tumor xenografts. We optimized the treatment protocol with this lentiviral vector, which was monitored by quantitation of the ratios of the signal integrals from PC/β-nucleoside triphosphate (NTP) and phosphomonoester (PME)/ β -NTP. Treatment efficacy was monitored by measuring tumor volumes.

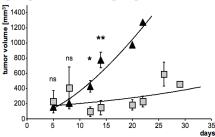
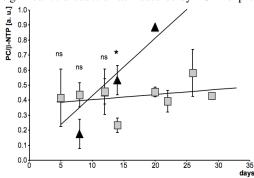
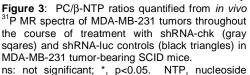


Figure 1: Tumor growth of human MDA-MB-231 breast cancer xenografts in SCID mice systemically treated with shRNA-chk to target Chk (gray squares) and treated with shRNAluc (black triangles) as controls.

Values are mean \pm standard error (n=4).


Methods


Lentiviral particles contained a construct encoding for shRNA-chk expression in the pRRL-pGK-EGFP lentiviral vector, which was produced as previously described [3]. Controls were transduced with virus expressing shRNA against Luciferase (shRNA-luc) [3]. Human MDA-MB-231 breast cancer cells were orthotopically inoculated into the mammary fat pad of severe combined immunodeficient (SCID) mice. An average of 2.7x10⁷ lentiviral particles in 200 µl phosphatebuffered saline per mouse was injected into the tail vein of MDA-MB-231 breast tumor-bearing SCID mice. In vivo single-voxel ³¹P MRS was performed on a 4.7T Bruker Biospec spectrometer to dynamically monitor tumoral PME and PC levels throughout the time course of Chk-targeted lentiviral gene therapy. Phosphorus MR spectra were processed and analyzed with an in-house IDL program (Dr. D. C. Shungu), using gaussian multiplication and a combination of linear and nonlinear least-square fitting [4]. Statistical analysis was performed using a t-test assuming unequal variances in the software package JMP (www.jmpin.com). Because the lentiviral vector also transduced enhanced green fluorescent protein (EGFP) expression [3], efficiency of viral transduction was ns: not significant; *, p<0.05; **, p<0.01. evaluated by fluorescence microscopy of EGFP expression in freshly cut 2-mm thick tumor slices once tumors reached volumes of approximately 800 mm³. Tumors were also sectioned and stained

with hematoxylin and eosin (H&E) to assess necrosis, and with the proliferation marker Ki67 to assess proliferation. Results

Discussion

The optimal treatment protocol was achieved by two intravenous injections of lentiviral particles encoding for shRNA-chk per week (on days 4 and 7), based on the evaluation of the ³¹P MR spectra and $\underline{e}_{2.0}$ tumor growth curves. Phosphorus MRS was performed twice a week on each day after injecting the lentiviral particles. Tumor growth was significantly attenuated in the treatment group treated with lentiviral particles expressing shRNA-chk as compared to controls (Fig. 1). In vivo ³¹P MRS demonstrated that the PME/β-NTP (Fig. 2) and PC/β-NTP (Fig. 3) ratios significantly decreased in shRNA-chk lentivirus treated tumors compared to shRNA-luc treated controls. All tumors displayed significant transduction as measured by EGFP expression.

triphosphate; PC, phosphocholine. Values are mean ± standard error (n=4).

and P50 CA103175 (JHU ICMIC Program).

regions in the H&E stained sections, and decreased numbers of Ki67-positive-staining cells PME/β-NTP ratios quantified Figure 2: as compared to shRNA-luc treated tumors, from in vivo ³¹P MR spectra of MDA-MB-231 tumors throughout the course of treatment with shRNA-chk (gray sqares) and shRNA-luc controls (black triangles) in Here we have demonstrated that tumoral Chk MDA-MB-231 tumor-bearing SCID mice. silencing can be achieved by bi-weekly NTP. ns: not significant; **, p<0.01. intravenous administration of lentiviral particles nucleoside

triphosphate; PME, expressing shRNA-chk into SCID mice bearing phosphomonoesters. Values are mean ± human MDA-MB-231 breast tumor xenografts. standard error (n=4).

This lentiviral particle-mediated Chk-targeted therapy significantly reduced tumor growth, and decreased proliferation in vivo, which is in good agreement with our previous in vitro studies the course of treatment with shRNA-chk (gray [1]. Systemic lentiviral shRNA-chk delivery in vivo decreased the tumoral PC and PME levels as monitored by PC/β-NTP and PME/β-NTP ratios from in vivo ³¹P MR spectra. Decreased PC and PME levels following shRNA-chk delivery are in good agreement with our previous studies [1]. Systemic viral particle-mediated Chk-targeted gene therapy may be feasible for clinical translation, and can be monitored by single-voxel ³¹P MRS in vivo.

References: [1] Glunde K et al, Cancer Res 65, 11034 (2005) [2] de Molina AR et al, Oncogene 21, 4317 (2002) [3] Glunde et al, ISMRM 2007, abstract #465 (2007) [4] Glunde K et al, Magn Reson Med 48, 819 (2002). This work was supported by NIH 1R01 CA82337

Tumors from mice treated with shRNA-chk

lentiviral particles contained large necrotic

indicative of decreased proliferation.