

Fat/Water Separation Using a Concentric Rings Trajectory

H. H. Wu¹, J. H. Lee¹, and D. G. Nishimura¹

¹Electrical Engineering, Stanford University, Stanford, CA, United States

Introduction: The concentric rings k -space trajectory enables flexible trade-offs between image contrast, signal-to-noise ratio (SNR), spatial resolution, and scan time [1–3]. By further taking advantage of its circularly-symmetric sampling nature, we present a time-efficient method to acquire image data and reconstruct separate fat/water images.

Concentric Rings Acquisition: A set of N uniformly-spaced concentric rings (Fig. 1 top left) is used to sample k -space [1–3]. Sinusoidal gradients are designed for the outermost ring (Fig. 1 top right), and then scaled down appropriately to acquire one ring per TR. This results in a sampling density that resembles 2D projection-reconstruction (2DPR). While keeping the readout window length fixed, we can be more efficient with gradient power by retracing the central $N/2$ rings (dashed line, Fig. 1 top left) to acquire the same desired samples through two revolutions (Fig. 1 bottom) [2]. Similar to multi-echo acquisitions, Set_1 and Set_2 can be reconstructed individually to convey information regarding fat/water phase evolution differences at their respective time points. Furthermore, each retraced ring is sampled continuously in time and in a circularly-symmetric fashion in k -space. This allows us to obtain fat/water phase information at additional time points by reconstructing *intermediate sets* extracted from the retraced readout (Fig. 1 bottom).

Fat/Water Separation: Signal contributions from fat and water can be formulated as a matrix equation [4, 5], where cf is the specified demodulation frequency, $\Delta\omega$ is the fat/water frequency shift, and each $img_{x,cf}$ corresponds to a source image acquired at arbitrary time point t_x and reconstructed at cf :

$$\begin{bmatrix} img_{1,cf} \\ img_{2,cf} \\ img_{3,cf} \end{bmatrix} = \begin{bmatrix} e^{i \cdot (0-cf) \cdot t_1} & e^{i \cdot (\Delta\omega-cf) \cdot t_1} \\ e^{i \cdot (0-cf) \cdot t_2} & e^{i \cdot (\Delta\omega-cf) \cdot t_2} \\ e^{i \cdot (0-cf) \cdot t_3} & e^{i \cdot (\Delta\omega-cf) \cdot t_3} \end{bmatrix} \cdot \begin{bmatrix} W_{cf} \\ F_{cf} \end{bmatrix} = A_{cf} \cdot \begin{bmatrix} W_{cf} \\ F_{cf} \end{bmatrix}$$

Reconstructing Set_1 and Set_2 from the retraced central rings produce img_1 and img_2 respectively. To obtain img_3 at a third time point, we reconstruct data corresponding to an *intermediate set* taken from the same readout (Fig. 1 bottom). Higher-resolution outer rings are incorporated into the equation by demodulating at cf and adding its reconstruction to all $img_{x,cf}$ as common information. The water image $W_{cf=0}$ can be obtained by setting $cf = 0$ and then finding the pseudo-inverse of $A_{cf=0}$. Similarly, the fat image $F_{cf=\Delta\omega}$ can be calculated by first specifying $cf = \Delta\omega$ in the equation [5]. Field inhomogeneities are not included in the current formulation, but can be accounted for with further processing based on this linear equation [4, 5].

Results: Experiments were performed on a GE Signa 1.5 T Excite system. 128 rings with the central 64 retraced were acquired for a 20 cm FOV, achieving isotropic in-plane resolution of 0.78 mm. The readout window was 3.2 ms for all rings and readout bandwidth was ± 125 kHz. Each revolution of the central rings was thus sampled in a short time window of 1.6 ms and limited the effects of field inhomogeneities. To demonstrate the method, we used the rings in a spoiled gradient-echo sequence. Total scan time was 8 seconds. Set_1 and Set_2 were reconstructed to obtain the first two source images, while an *intermediate set* centered between Set_1 and Set_2 was used to produce the third (Fig. 2 top row). These three source images were used to calculate separate water and fat images of the same slice (Fig. 2 bottom row). Using a multi-slice acquisition in the future will enable greater coverage in the same amount of scan time.

Conclusion: Our presented method acquires registered image data at multiple time-points very efficiently. The concentric rings trajectory by itself already enables shorter scan times than Cartesian imaging or 2DPR for a prescribed FOV and spatial resolution [1–3]. Retracing the central rings to acquire data through two revolutions requires no extra scan time compared with a regular concentric rings acquisition, thereby preserving its scan time advantage. The time efficiency of the concentric rings is then enhanced by extracting a third intermediate time point from the same two-revolution readout, making this method even more efficient than conventional multi-echo approaches. Extracting additional intermediate time points makes it possible to improve the conditioning of the matrix problem, and potentially resolve more than two chemical-shift species with just two revolutions [4]. Further SNR analysis will help determine the optimal utilization of these intermediate sets. A simple least-squares approach was used here, but the source images can be used with more sophisticated multi-point fat/water separation algorithms for greater robustness. Potential off-resonance blurring can also be corrected by combining multi-frequency reconstruction with fat/water separation [5].

References: [1] Zhou X, et al., MRM 1998; 39(1): 23–27. [2] Wu HH, et al., Proc. 14th ISMRM, p. 341, 2006. [3] Wu HH, et al., Proc. 15th ISMRM, p. 414, 2007.

[4] Reeder S, et al., MRM 2004; 51(1): 35–45. [5] Gurney PT, et al., Proc. 15th ISMRM, p. 1635, 2007.

Fig. 1. Concentric rings (top left), gradients (top right), and retraced gradients (bottom) for the central rings. Readout window length is fixed.

Fig. 2. Sagittal knee images. The three source images at water center frequency (top row) and reconstructed water/fat images (bottom row). sequence with TE/TR/θ = 3.4 ms/60 ms/40° to acquire a single 4 mm slice of the knee. Total scan time was 8 seconds. Set_1 and Set_2 were reconstructed to obtain the first two source images, while an *intermediate set* centered between Set_1 and Set_2 was used to produce the third (Fig. 2 top row). These three source images were used to calculate separate water and fat images of the same slice (Fig. 2 bottom row). Using a multi-slice acquisition in the future will enable greater coverage in the same amount of scan time.