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Introduction: MRI has gained clinical acceptance as a non-invasive tool to monitor tissue iron stores in patients with iron overload syndromes. Relaxivity parameters 
R2 (1/T2) and R2* (1/T2*) have been calibrated with clinical accuracy on 1.5T scanners to quantify hepatic iron concentration (HIC) (1, 2). R2* rises linearly with HIC 
while R2 has a curvilinear relationship. With the increase in migration to 3T scanners, there is need to translate these calibration curves to higher fields. In this regard, 
tissue biopsy is not a very practical approach. Alternatively, a recent study (3) established the relationship between R2* at 3T and 1.5T over a wide range of HIC; R2* 
increased two-fold with field strength. However, a similar field-dependent calibration for R2 is currently lacking. Moreover, due to the non-linear nature of the R2-iron 
relationship, it is unclear whether R2 scales linearly with field strength. Toward this end, we followed a computational approach by generating realistic (iron 
overloaded) liver geometries and simulating R2 and R2* imaging experiments. Such a model has already been successful in predicting R2-iron and R2*-iron 
relationships within tolerable limits (4). Here we extend the model to interrogate the relaxivity enhancement brought about by a wide range of field strengths. To 
validate and compare the predictions of the model, we also performed R2 and R2* imaging at 1.5T and 3T in the livers of patients with transfusional iron burden. A 
model-based approach will eliminate the need to recalibrate in patients for changes in sequence type, sequence parameters and imaging conditions. 
 
Methods: 80 μm side (cuboidal) ‘virtual’ liver geometries with 64 hepatocytes were generated for HIC in 
the range of 0.5-60 mg/g dry tissue weight, as previously described (4). Magnetic susceptibility of 
impenetrable spherical iron deposits was computed as a 4:1 mixture of hemosiderin and ferritin using 
literature values. 5000 protons were allowed to perform a random walk (diffusion coefficient = 0.76 
μm2/ms) through the magnetic environment and field induction decays were computed using their phase 
accruals (R2* measurement). A single echo experiment was also simulated to measure R2 with echo times 
(TE) logarithmically spaced between 0.1-30 ms.  Simulations were performed for field strengths varying 
between 0.25-7T. The model neglected any contact or exchange mechanisms.   
 MRI measurements were performed on thalassemia major patients using phased array coil on 
1.5T and 3T GE Signa Twinspeed systems. Liver R2* was measured (16 patients) in a single mid-hepatic 
slice using single-echo gradient echo sequence as described in (3). Liver R2 was measured (6 patients) in 4 
slices using a 90°-90° Hahn spin echo sequence with TR=300ms, TEmin=3ms (4ms at 3T), TEmax=70ms, 
BW=62.5 kHz, NEX=1 and matrix size=64x64. R2 values were computed in 16 regions of interest (4 per 
slice) by fitting the mean signal decay to an (exponential+constant) model. 
 
Results: (Let x and y represent the horizontal and vertical axes respectively). Fig. 1 shows the relationship 
between 3T and 1.5T R2*. Both model and patient data demonstrated a two-fold increase in R2* at 3T. 
Bland-Altman analysis showed that difference in patient and model-predicted R2* values was not 
statistically significant (standard deviation = 13.8%). Fig. 2 shows 3T vs. 1.5T R2; model-predicted 
relationship was highly linear with an R2 of 0.9958. There was no statistical difference between patient and 
predicted R2 according to Bland-Altman analysis (standard deviation = 7.24%). A regression slope of 1.47 
indicated that R2 did not increase linearly with field strength.  

Model-predicted (X T vs 1.5T) plots, where X=0.25-7T, demonstrated extremely tight 
regression lines with minimum R2 = 0.9905 (for R2) and 0.9967 (for R2*). We refer to the (X T vs 1.5T) 
regression slope as relaxivity enhancement (RE). Fig. 3 shows the RE computed by simulating a range of 
field strengths; the relationship is linear for R2* as expected but curvilinear for R2 (linear in log-log scale). 
The equations are given by, RER2(X) = exp(-0.22 + 0.56*log(X)) and RER2*(X) = -0.0086 + 0.68*X. Hence, 
if R2 and R2* calibration curves are known at 1.5T, they can be translated to other field strengths using, 
R2(X) = R2(1.5T) * RER2(X) and R2*(X) = R2*(1.5T) * RER2*(X). 
 
Discussion: With increasing popularity of 3T scanners, it is important to characterize R2 and R2* behavior 
in relaxivity-based high-field clinical applications. Using liver as a ‘model’ tissue, we demonstrate here that 
a realistic tissue model can be used to translate relaxivity-iron calibration curves to higher field strengths. 
As we move to higher fields, magnetic perturbers cause the MRI signal to decay very rapidly. R2* being 
linear with field, is limited by the allowable minimum echo time. Hence, R2* calibration will be restricted 
to the lower half of the clinically-relevant HIC. On the other hand, the non-linear field dependence of R2 
will predict a reasonable upper limit of iron burden with a standard minimum TE. A limitation of the study 
was that R2 imaging was performed only on 6 patients. However, these formed a wide range of HIC 
measurements (~3-35 mg/g dry wt.) (2) and were in excellent agreement with the model. Future multi-field 
comparisons in large patient populations will help reinforce the model validation. On a different note, iron 
calibration curves have been obtained for CPMG sequences as well (5, 6, 7); these are different compared 
to spin echo R2 relationships. The model can be used to interrogate complicated CPMG behavior and  
expose underlying mechanisms of inter-echo spacing and field dependent R2 behavior (5). With that said, 
the real power of the model lies in predicting iron-mediated R2 and R2* without having to perform tissue 
biopsies and re-scan patient cohorts for new sequences and clinical sites.  
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