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INTRODUCTION. We design & demonstrate a 7-ms slice-selective pulse that mitigates B1
+ inhomogeneity in the human brain at 7T without the use of 

a parallel transmission system. At high field, severe RF inhomogeneity due to wavelength interference & attenuation causes standard slice-selective 
pulses (SSSPs) to produce non-uniform flip angles across the field of excitation (FOX), leading to contrast & SNR non-uniformity. One way to 
mitigate B1

+ inhomogeneity is to use spoke-based RF pulses; these are comprised of weighted sinc-like segments in kz placed at different locations in 
(kx, ky) that play along an echo-volumnar trajectory [1,2]. In the small-tip-angle regime [3], the sinc segments excite a slice in z, while the (kx, ky) 
weights tailor the in-plane excitation into the pointwise-inverse of the inhomogeneity. The work here extends our earlier effort [4] to in vivo trials & 
makes use of recent techniques: a magnetization reset pulse to permit fast (TR�T1) acquisition of multiple images [5], the fitting of these images to 
an intensity equation to estimate B1

+, & a novel sparsity-enforced spoke placement to find a small set of spoke locations & weights [6]. 
 

THEORY & METHODS. Signal intensity equations. Image intensity IV at 
location r due to an SSSP with peak voltage V is: 
    IV(r)=c·ρ(r)·B1

-(r)·sin(α
0
(r))[1-E1(r,TR)][1-E1(r,TR)cos(α

0
(r))]-1 (Eq.1), 

where c is a constant, ρ proton density, B1
- the receive profile,  

E1(r,TR) = exp(-TR/T1(r)), and α
0
(r) = γVτ·B1

+(r), where τ is the SSSP’s 
duration & B1

+ is in Tesla/volt.  Let R(r) ≡ ρ(r)·B1
-(r).  With a reset pulse [5], 

IV(r) = c·R(r)·[1-E1(r,TR)]·sin(α
0
(r)) (Eq.2), i.e., the T1-denominator is 

removed (even if TR�T1).  Finally, if α
0
 is small and a reset pulse is not used, 

cos(α
0
) � 1, sin(α

0
) � α

0
, and thus Iv(r) = c·R(r)·α

0
(r) (Eq.3). 

Profile estimation. To estimate B1
+(r), we collect N images with increasing V 

using an SSSP + reset pulse [5]. Then ∀r ∈ FOX, we fit the N values to Eq.2.  
To estimate R(r), we collect a low-flip-angle image, Lo(r), without a reset pulse. 
Eq.3 now holds, and Lo(r) / B1

+(r) yields R(r) within a constant. 
Sparsity-Enforced Spoke Placement (SESP) & pulse design. To minimize 
pulse duration, only a few spokes may be used; each must be placed & weighted 
such that the excitation resembles [B1

+(r)]-1, so that the overall magnetization 
m(r) is uniform.  One may use SESP [4,6] to determine good spoke coordinates: 
First, discretize space at locations ri, i = 1…Ns. Next, define a set of candidate 
spoke locations in 2-D k-space, ki, i = 1…Nf, with weights gi.  Let m ∈ CNs be a 
vector of m(ri) samples, g ∈ C

Nf a vector of gis, D a diag. matrix of B1
+(ri) 

samples, and A ∈ C
Ns×Nf, where Am,n ∝ exp(j2πrm·kn); then, m = DAg.  Next, 

define a target magnetization, d(r), sample it, and form d ∈ CNs.  Finally, solve 
ming  ||d-DAg||2

2 + λ||g||1 (for fixed λ): this yields a sparse g, one with few large 
weights, revealing a small set of T locations to be traversed by the gradients.  
The pulse is designed by fixing spoke shape in kz, truncating all but T of A’s columns, & retuning the weights by least-squares fitting d=DAtruncgtrunc. 
Post-mitigation flip angle estimation & quality metrics. B1

+ mitigation is quantified by playing the pulse and analyzing the resulting flip angle 
map, α

m
(r).  This is achieved by obtaining a low-flip mitigation image, Lm(r) ∝ R(r)·α

m
(r) (per Eq.3).  Since R(r) is known, Lm(r)/R(r) gives α

m
(r) 

within a multiplicative constant.  The uniformity of α
m

(r) is quantified by computing its in-FOX normalized standard deviation, σ, and worst-case 
maximum variation, MV (maximum in-FOX value divided by minimum in-FOX value); these values are then compared to those of the initial α

0
(r). 

 

RESULTS. Human studies used a 7T scanner, body gradients, and a quadrature birdcage coil in accordance with 
the institution’s HRC. Ten images were collected using SSSPs (V = 20V, 60V, …, 380V; TR = 1s) followed 
by resets.  Data was fitted to obtain α

o
(r) and B1

+(r) (Fig. 1: C); each is highly non-uniform with (σ, MV) = 
(0.15, 2.24).  An R(r) estimate was obtained from a low-flip SSSP image without reset pulse (Fig. 1: A, B).  
B1

+(r) was fed to SESP, and with λ = 0.35, 19 spoke locations were determined (Fig. 2). After fixing spokes to 
be Hanning-windowed sincs (TBW=4), these locations & weights yielded the 7-ms pulse shown (Fig. 3).  This 
pulse was simulated (Fig. 1: D) to verify 
that it yielded approximately [B1

+(r)]-1. 
The pulse was applied in vivo, and a low-

flip image obtained (Fig. 1: E); slice selection worked properly (Fig. 1: F).  This 
image was divided by R(r) to yield α

m
(r) (Fig. 1: G).  Qualitatively, α

m
(r) is 

significantly more uniform than α
o
(r) (compare the 1-D profiles).  

Quantitatively, σ and worst-case MV have been reduced by factors of 3 and 1.7, 
respectively, a major flip angle uniformity improvement relative to α

o
(r). 

 

CONCLUSION. In vivo B1
+ inhomogeneity present in the human brain at 7T was 

mitigated using a 7-ms slice-selective SESP-designed pulse. Commercially- 
available head-only gradients with amplitude & slew rates of 35 mT/m and 600 
T/m/s would allow the use of a 19-spoke, 10-mm excitation pulse that performs 
B1

+ mitigation in only 5.25 ms. 
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Fig. 2: SESP-determined Spoke Locations
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Fig. 3: Mitigation Pulse, Gradients, & k-Space Trajectory
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Fig. 1:  B1+ Mitigation Results in the Human Brain at 7T
 A. Low-flip image, L o(r), collected using standard slice-selective pulse
 B. Receive profile, R(r), contains proton-density weighting
 C. Highly nonuniform transmit profile, B1+(r), σ = 0.15, worst-case variation = 2.24
 D. B1+ Mitigation pulse: simulated in-FOX excitation, strongly resembles [B 1+(r)]-1
 E. B1+ Mitigated image (in-plane), closely resembles R(r), implying successful mitigation
 F. B1+ Mitigation image (through-plane), slice selection is evident
 G. Highly uniform flip angle after mitigation, σ = 0.05, worst-case variation = 1.35
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