A. C. ZELINSKI¹, K. SETSOMPOP¹, V. ALAGAPPAN², V. K. GOYAL¹, L. L. WALD^{3,4}, AND E. ADALSTEINSSON^{1,4}

¹RESEARCH LABORATORY OF ELECTRONICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MA, UNITED STATES, ²A. A. MARTINOS CENTER FOR BIOMEDICAL IMAGING, CHARLESTOWN, MA, UNITED STATES, ³DEPARTMENT OF RADIOLOGY, HARVARD MEDICAL SCHOOL, LONGWOOD, MA, UNITED STATES, ⁴HARVARD-MIT DIVISION OF HEALTH SCIENCES & TECHNOLOGY, CAMBRIDGE, MA, UNITED STATES

INTRODUCTION. We design & demonstrate a 7-ms slice-selective pulse that mitigates B_1^+ inhomogeneity in the human brain at 7T without the use of a parallel transmission system. At high field, severe RF inhomogeneity due to wavelength interference & attenuation causes standard slice-selective pulses (SSSPs) to produce *non-uniform* flip angles across the field of excitation (FOX), leading to contrast & SNR non-uniformity. One way to mitigate B_1^+ inhomogeneity is to use spoke-based RF pulses; these are comprised of weighted sinc-like segments in k_z placed at different locations in (k_x, k_y) that play along an echo-volumnar trajectory [1,2]. In the small-tip-angle regime [3], the sinc segments excite a slice in z, while the (k_x, k_y) weights tailor the in-plane excitation into the pointwise-inverse of the inhomogeneity. The work here extends our earlier effort [4] to *in vivo* trials & makes use of recent techniques: a magnetization reset pulse to permit fast (TR \ll T₁) acquisition of multiple images [5], the fitting of these images to an intensity equation to estimate B_1^+ , & a novel sparsity-enforced spoke placement to find a small set of spoke locations & weights [6].

THEORY & METHODS. Signal intensity equations. Image intensity I_V at location \mathbf{r} due to an SSSP with peak voltage V is:

$$\begin{split} & [I_{V}(\mathbf{r}) = c \cdot \rho(\mathbf{r}) \cdot B_{1}^{-}(\mathbf{r}) \cdot \sin(\alpha_{\circ}(\mathbf{r})) [1 - E_{1}(\mathbf{r}, TR)] [1 - E_{1}(\mathbf{r}, TR) \cos(\alpha_{\circ}(\mathbf{r}))]^{-1}] \text{ (Eq. 1),} \\ & \text{where } c \text{ is a constant, } \rho \text{ proton density, } B_{1}^{-} \text{ the receive profile,} \\ & E_{1}(\mathbf{r}, TR) = \exp(-TR/T_{1}(\mathbf{r})), \text{ and } \alpha_{\circ}(\mathbf{r}) = \gamma V \tau \cdot B_{1}^{+}(\mathbf{r}), \text{ where } \tau \text{ is the SSSP's} \\ & \text{duration } \& B_{1}^{+} \text{ is in Tesla/volt. Let } R(\mathbf{r}) \equiv \rho(\mathbf{r}) \cdot B_{1}^{-}(\mathbf{r}). \text{ With a reset pulse [5],} \\ & \overline{I_{V}(\mathbf{r})} = c \cdot R(\mathbf{r}) \cdot [1 - E_{1}(\mathbf{r}, TR)] \cdot \sin(\alpha_{\circ}(\mathbf{r})) \text{ (Eq. 2), i.e., the } T_{1}\text{-denominator is removed (even if } TR \ll T_{1}). \text{ Finally, if } \alpha_{\circ} \text{ is small and a reset pulse is } \mathbf{not} \text{ used,} \\ & \cos(\alpha_{\circ}) \simeq 1, \sin(\alpha_{\circ}) \simeq \alpha_{\circ}, \text{ and thus } \overline{I_{V}(\mathbf{r})} = c \cdot R(\mathbf{r}) \cdot \alpha_{\circ}(\mathbf{r}) \text{ (Eq. 3).} \end{split}$$

Profile estimation. To estimate $B_1^+(\mathbf{r})$, we collect N images with increasing V using an SSSP + reset pulse [5]. Then $\forall \mathbf{r} \in FOX$, we fit the N values to Eq.2. To estimate $R(\mathbf{r})$, we collect a low-flip-angle image, $L_0(\mathbf{r})$, without a reset pulse. Eq.3 now holds, and $L_0(\mathbf{r}) / B_1^+(\mathbf{r})$ yields $R(\mathbf{r})$ within a constant.

Sparsity-Enforced Spoke Placement (SESP) & pulse design. To minimize pulse duration, only a few spokes may be used; each must be placed & weighted such that the excitation resembles $[B_1^+(\mathbf{r})]^{-1}$, so that the overall magnetization $m(\mathbf{r})$ is uniform. One may use SESP [4,6] to determine good spoke coordinates: First, discretize space at locations \mathbf{r}_i , $i=1...N_s$. Next, define a set of candidate spoke locations in 2-D k-space, \mathbf{k}_i , $i=1...N_s$, with weights g_i . Let $\mathbf{m} \in \mathcal{C}^{Ns}$ be a vector of $m(\mathbf{r}_i)$ samples, $\mathbf{g} \in \mathcal{C}^{Nf}$ a vector of $g_i s$, \mathbf{D} a diag. matrix of $B_1^+(\mathbf{r}_i)$ samples, and $\mathbf{A} \in \mathcal{C}^{Ns \times Nf}$, where $\mathbf{A}_{m,n} \propto \exp(\mathrm{j}2\pi\mathbf{r}_m \cdot \mathbf{k}_n)$; then, $\mathbf{m} = \mathbf{D}\mathbf{A}\mathbf{g}$. Next, define a target magnetization, $d(\mathbf{r})$, sample it, and form $\mathbf{d} \in \mathcal{C}^{Ns}$. Finally, solve $\min_{\mathbf{g}} \|\mathbf{d} \cdot \mathbf{D}\mathbf{A}\mathbf{g}\|_2^2 + \lambda \|\mathbf{g}\|_1$ (for fixed λ): this yields a *sparse* \mathbf{g} , one with few large weights, revealing a small set of T locations to be traversed by the gradients.

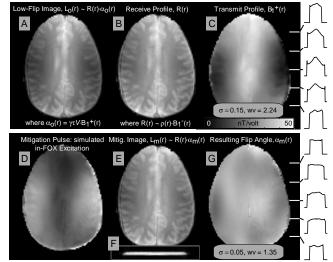
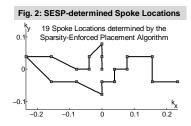


Fig. 1: B_1 + Mitigation Results in the Human Brain at 7T A. Low-flip image, $L_0(r)$, collected using standard slice-selective pulse B. Receive profile, R(r), contains proton-density weighting C. *Highly nonuniform* transmit profile, B_1 +(r), σ = 0.15, worst-case variation = 2.24 D. B_1 + Mitigation pulse: simulated in-FOX excitation, strongly resembles [B_1 +(r)]-1 E. B_1 + Mitigation image (in-plane), closely resembles R(r), implying successful mitigation F. B_1 + Mitigation image (through-plane), slice selection is evident G. *Highly uniform* flip angle after mitigation, σ = 0.05, worst-case variation = 1.35

The pulse is designed by fixing spoke shape in k_z , truncating all but T of \mathbf{A} 's columns, & retuning the weights by least-squares fitting $\mathbf{d}=\mathbf{D}\mathbf{A}_{\text{trun}}$. **Post-mitigation flip angle estimation & quality metrics**. B_1^+ mitigation is quantified by playing the pulse and analyzing the resulting flip angle map, $\alpha_m(\mathbf{r})$. This is achieved by obtaining a low-flip mitigation image, $L_m(\mathbf{r}) \propto R(\mathbf{r}) \cdot \alpha_m(\mathbf{r})$ (per Eq.3). Since $R(\mathbf{r})$ is known, $L_m(\mathbf{r})/R(\mathbf{r})$ gives $\alpha_m(\mathbf{r})$ within a multiplicative constant. The uniformity of $\alpha_m(\mathbf{r})$ is quantified by computing its in-FOX normalized standard deviation, σ , and worst-case maximum variation, MV (maximum in-FOX value divided by minimum in-FOX value); these values are then compared to those of the initial $\alpha_0(\mathbf{r})$.



RESULTS. Human studies used a 7T scanner, body gradients, and a quadrature birdcage coil in accordance with the institution's HRC. Ten images were collected using SSSPs (V = 20V, 60V, ..., 380V; TR = 1s) followed by resets. Data was fitted to obtain $\alpha_o(\mathbf{r})$ and $B_1^+(\mathbf{r})$ (Fig. 1: C); each is highly non-uniform with (σ , MV) = (0.15, 2.24). An $R(\mathbf{r})$ estimate was obtained from a low-flip SSSP image *without* reset pulse (Fig. 1: A, B). $B_1^+(\mathbf{r})$ was fed to SESP, and with $\lambda = 0.35$, 19 spoke locations were determined (Fig. 2). After fixing spokes to be Hanning-windowed sincs (TBW=4), these locations & weights yielded the 7-ms pulse shown (Fig. 3). This

pulse was simulated (Fig. 1: D) to verify that it yielded approximately $[B_1^+(\mathbf{r})]^{-1}$. The pulse was applied *in vivo*, and a low-

flip image obtained (Fig. 1: E); slice selection worked properly (Fig. 1: F). This image was divided by $R(\mathbf{r})$ to yield $\alpha_m(\mathbf{r})$ (Fig. 1: G). Qualitatively, $\alpha_m(\mathbf{r})$ is significantly more uniform than $\alpha_o(\mathbf{r})$ (compare the 1-D profiles). Quantitatively, σ and worst-case MV have been reduced by factors of 3 and 1.7, respectively, a major flip angle uniformity improvement relative to $\alpha_o(\mathbf{r})$.

CONCLUSION. *In vivo* B_1^+ inhomogeneity present in the human brain at 7T was mitigated using a 7-ms slice-selective SESP-designed pulse. Commercially-available head-only gradients with amplitude & slew rates of 35 mT/m and 600 T/m/s would allow the use of a 19-spoke, 10-mm excitation pulse that performs B_1^+ mitigation in only 5.25 ms.



REFERENCES. [1] Saekho et al. MRM '06;55(4):719-724. [2] Ulloa et al. 2005; ISMRM, p 21. [3] Pauly et al. JMR '89;81:43-56. [4] Setsompop, Zelinski et al. ISMRM '07, p 356. [5] Cunningham et al. MRM '06;55:1326-1333. [6] Zelinski et al. ISMRM '07, p 1691.