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INTRODUCTION: Diffusion weighted MRI provides biologically relevant information about the tissue microstructure. Information about microstructural parameters is 
derived from biophysical modelling of the signal formation in investigated tissues. However, for a realistic tissue description such models are rather complex and often 
include ill defined parameters not adequately supported by the measurement data. As an alternative approach data-driven analysis of multidirectional diffusion weighted 
MRI data may provide unique fingerprints for different types of tissue. Such an analysis can be performed using efficient algorithms for pattern recognition known from 
computer science. In the present study we use a support vector machine (SVM) [1], a supervised machine learning technique for classification, which has demonstrated 
a robust performance in a number of applications [e.g. 2]. The SVM is used for differentiation of three different classes: grey matter (GM), fibre crossing bundles (CR) 
and parallel fibre bundles (PF) within white matter (WM). Measurement data are gathered from high angular resolution diffusion imaging (HARDI). The analysis 
requires: first, an appropriate representation of the data; second, the creation of labelled data sets for training (containing pairs of input data and desired outputs) and 
testing; and third, the application to in vivo data. HARDI data are represented by rotational invariant weights of low-order spherical harmonics. 
The method was systematically tested using simulations and applied to an in vivo data set. Verification of assignment to GM was based on a T1-weighted (MPrage) 
dataset. In vivo validation of PF versus CR would require a gold standard, which is not available. Therefore a simulated data set was used for training of the algorithm.  

METHODS: The diffusion weighted images were simulated for 81 diffusion encoding directions (DEdirs) evenly distributed on a sphere. The same template was used 
for the simulation of GM, PF and CR, which included two crossing fibre bundles with varying angle between them and relative weights in the signal. The fractional 
anisotropy (FA) and the mean diffusivity (mD) were equal for both bundles. The mean diffusivity was constant for each tissue type: 0.39*10-3 mm²s-1 in GM and 
0.79*10-3 mm²s-1 in PF and CR. The remaining three parameters were varied independently within each class. GM was simulated with small FA up to 0.15, the relative 
weight and the angle between fibres were close to zero. For PF a FA above 0.55 was assigned with an angle between fibre bundles close to zero. The simulation of CR 
was performed with an intermediate FA from 0.2 to 0.55, a relative weight of fibres of 0.2 to 0.5 (both bundles are the same) and with an increasing angle above 30°. 
Six data sets with different noise instants (Gaussian white noise) were created as training data sets. The testing data sets were identical except that the fibres were 
randomly rotated about the z-axis and that new noise instants were added. 520 parameter combinations representing one tissue class were simulated. 
A prerequisite of the tissue recognition using the SVM is a rotational invariant data representation. The information about fibre orientation was removed from by 
expansion in spherical harmonics (SH) and computing the power of the orders zero to six. A SVM C++ library called libSVMtl [3] was used, which has a number of 
internal algorithmic options. 
For a test of performance of the SVM using in vivo data, HARDI data was acquired on a 3 T Siemens TRIO (TR = 11000 ms, TE = 94 ms, voxel: 2x2x2 mm³, matrix: 
104x104 pixel², DEdirs = 81 with b = 1000, 11 b = 0 images). An additionally acquired T1-weighted MPrage was coregistered to the non-weighted HARDI images and 
segmented into GM, WM and cerebrospinal fluid. The SVM was trained with a simulated data set (SNR = 10). 

RESULTS: Fourteen different SVM specific algorithmic options were tested. Amongst those, four algorithms all using a radial basis function as kernel showed the best 
sensitivity and specificity. Only the results of the two best algorithms are presented in table 1. The SVM demonstrated an excellent performance. Most critical was the 
detection of PFs. For algorithm 1 the PFs were wrongly detected to be crossings at an SNR level of 100 in a single parameter set. The detection of CR showed small 
error quota starting at an SNR of 30. At the lowest SNR level of five GM detection remained still above 99 %. The classification resulting from algorithm 2 was similar 
to algorithm 1, but had a higher error quota for PF in the lower SNR range. 

SNR ∞ 100 60 30 10 5 ∞ 100 60 30 10 5 ∞ 100 60 30 10 5
algorithm 1:
true positives 100,00% 100,00% 100,00% 100,00% 100,00% 99,42% 100,00% 99,81% 99,81% 99,81% 97,88% 92,69% 100,00% 100,00% 100,00% 98,85% 99,23% 95,96%
false positives 0,00% 0,00% 0,00% 0,00% 0,00% 0,48% 0,00% 0,00% 0,00% 0,58% 0,38% 1,63% 0,00% 0,10% 0,10% 0,10% 1,06% 3,85%
algorithm 2:
true positives 100,00% 100,00% 100,00% 100,00% 100,00% 99,62% 100,00% 100,00% 100,00% 99,81% 95,96% 89,62% 100,00% 100,00% 100,00% 99,81% 99,81% 97,69%
false positives 0,00% 0,00% 0,00% 0,00% 0,00% 0,38% 0,00% 0,00% 0,00% 0,10% 0,10% 0,87% 0,00% 0,00% 0,00% 0,10% 2,02% 5,29%

GM PF CR

 
Table 1: Results of segmentation in simulated phantoms with six different noise instants. The results of the two best performing SVM algorithms are listed. 
The results for the segmentation of the in vivo data are shown in the figures below. There is no quantitative evaluation of correctness possible; one expects that about 90 
% of the WM are crossings. Figure 1a highlights crossings (CR) and 1b the parallel fibre bundles (PF) both overlaid on FA maps. The results were masked with WM 
masks obtained from the T1-weighted image. Figures 1c and d show masks created by thresholding FA. 

    
Figure 1a: Found CR in in vivo 
data illustrated in red. 

Figure 1b: Found PF in in vivo 
data illustrated in red. 

Figure 1c: FA mask thresholded between 0.2 - 
0.55. The blue ellipses indicate errors, cf. fig. 1a. 

Figure 1d: FA mask thresholded above 0.55. 
The blue ellipses indicate errors, cf. fig. 1b. 

DISCUSSION AND OUTLOOK: A new method for the separation of parallel and crossing fibre bundles in the brain white matter using HARDI data and a SVM 
algorithm is presented. A rotationally invariant data representation was used as input for the SVM. The chosen SVM algorithms proved a surprisingly high accuracy and 
robustness even with data sets having a SNR of only five. The recognition of fibre crossings is based on HARDI data obtained in a typical clinical setting. T1 weighted 
images were used to validate the recognition of grey matter. Our analysis showed to be more sensitive than FA thresholding especially for crossings (cf. figs 1a - d), 
which is due to the usage of SH orders above two giving more information about the underlying diffusion distribution. The FA value relies on the diffusion tensor 
model, which correlates with the SH of order two. Proper verification of the results remains a challenge, which is a commonly recognised problem in DTI fibre 
tracking. Our method can provide a priori knowledge for increasing the performance of fibre tracking algorithms. Future work will be dedicated to derive further 
refinements for sub-classification of CR and GM areas. Also, SVM allow including more and different types of MRI data for multi-parametric tissue classification. 
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