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Numerous investigators, e.g. (1-3), have proposed techniques for combining data from phased array coils to produce the optimal image SNR. 
Typically, a type of sensitivity-weighted average is used, though the sum-of-squares (SOS) combination is advocated as an easily implemented 
approximation to this “optimal” result. One aspect that has received relatively little attention is the optimal coil combination technique if a series of 
such images are being utilized to produce parametric estimates. Herein we address this question by utilizing Bayesian probability theory to jointly 
analyze the data from multiple channels, allowing each channel to have independent amplitudes and noise powers. We have also compared the joint 
analysis to the standard alternatives to determine the technique that produces the most precise parameter estimates. Our results demonstrate that a 
joint Bayesian analysis offers a "worry free" method for obtaining optimal parameter estimates from the analysis of array-coil data. 
Theory: For a simple mono-exponential model, the signal in the m-th coil at the imaging time tn is modeled as ( ) exp( )m n m nS t A R t= ⋅ − . The joint 

posterior probability of the coil amplitudes A ={Am} and relaxation rate constant R given the data, D, the standard deviation of the noise for each 
channel, σ ={σm}, and the prior information, I, is given by (4):  
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where Dm(tn) is the observed data on channel m at time tn. The uncertainty in the estimate of R, σR, can be evaluated by integrating p(A,R|D,σ,I) over 
all possible values of the amplitudes and utilizing the Laplace approximation (5) . The result is as follows:  
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where /m m mSNR A σ=  is the SNR in the m-th coil. For weighted averaging (WAv), ( ) ( )n m m nD t D tλ=∑  and Eq. [2] is modified by the 

substitution: ( )1/22 2/Joint WAv m m m mSNR SNR Aλ λ σ→ =∑ ∑ . For an un-weighted average, λm = 1; for sensitivity weighting,  λm = Am. Using the Cauchy 

inequality, it can be proven that 
intJo WAvSNR SNR≥  and therefore Joint WAv

R Rσ σ≤ ; with equality at 2/m m mAλ σ= .  

Methods: These theoretical predictions were verified by analyzing simulated two-channel relaxation data (160,000 sets) with normally-distributed 
noise which were generated using each of the following parameter sets: A1 = 25, σ1 = 1, R=1, tn = {0, 1}, and SNR2 = {25, 20, 15, 10, 5, 2}; where the 
decrease in SNR2 was generated by either decreasing A2 or increasing σ2 from the channel 1 values. The multichannel data was analyzed jointly, 
using the high SNR channel alone, or by using the average and SOS combination of channels. Estimates for the relaxation rate constant and its 
uncertainty were calculated from the posterior probability distribution function in equation (1) for each data set, combination, and parameter set using 
customized MATLAB routines.  A second series of data were generated using magnitude data for each channel and analyzed as above. 
 Results: The theoretically predicted uncertainties in the relaxation rate constant for phased data as a function of SNR2 are shown as lines in Fig. 1 

and the average uncertainties over the simulations 
are shown as data points. The data show excellent 
agreement with the theoretical values except in 
cases of extremely low SNR2. As the SNR of the 
second channel decreases from SNR1 to zero, the 
uncertainty in R from the joint analysis transitions 
from 2  lower than the one channel result to the 
one channel result. In contrast, while the un-
weighted average has the same uncertainty when 
both channels are equal, it will produce substantially 
higher uncertainties than even the single channel 
result when the signals on the two channels are 
significantly different, especially if that difference is 

due to an increase in the noise power. The uncertainty from the sensitivity-weighted average (λm = Am) and SOS are omitted for clarity as they would 
overlap the joint analysis when the amplitude of the second channel is changing and the average analysis when the noise power is changing. Thus, 
while the joint analysis is either improved or unaffected by the inclusion of low SNR channels, parameter estimates can be significantly corrupted 
from alternate combination methods that do not properly account for differences in channel amplitudes and noise powers. Uncertainties obtained 
from magnitude data show similar patterns.  

Biases in the relaxation rate constant estimates from phased data are shown in Fig. 2. The SOS combination results in increased bias over 
joint analysis and this effect increases if the noise power varies between channels or as any of the data values approach the noise floor.  While bias is 
always present using magnitude data, the bias from the joint analysis is always smaller than or comparable to the bias from the SOS combination. 
Conclusion:   Our results demonstrate that joint Bayesian analysis offers a "worry free" method for obtaining optimal parameter estimates from the 
analysis of array coil data. While combining channels weighted by 2/m m mAλ σ= can produce optimal estimates (within the accuracy that this factor is 

known), the use of incorrect weighting factors corrupts the parameter estimates.  This effect is amplified for low SNR, increased number of low SNR 
channels, increased number of low SNR points in the relaxation curve, variations in noise power across channels, and with magnitude data.  
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