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Introduction 
MRI simulation is an important tool for the design and optimization of pulse sequences and clinical protocols. Most MRI simulations, however, are 
restricted to geometrically simple objects or voxel-based descriptions of complex objects. Building upon the idea that the MRI signal equation can be 
integrated analytically over linear tetrahedral elements [1], we showed how numerical integration of the signal equation permits the use of volumetric 
elements that can conform more naturally to anatomically-realistic objects [2,3]. Here we extend and simplify these concepts further, by showing 
how the signal equation can be integrated over surface rather than volume elements. 

Theory and Methods 
The basic idea stems from the fact that, according to the Gauss (divergence) theorem, integration over a volume can be reduced to integration over 
the bounding surface, provided that integrand of the volume integral can be expressed as the divergence of a function. For the MRI signal equation, 
this can be accomplished provided the magnetization, m, is spatially uniform, in which case: 
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where n is the unit vector normal to the surface. Relative to volumetric integration, efficiency is achieved in three ways. First, the cumbersome and 
often-difficult volumetric meshing step is avoided. Second, the number of elements over which integration is performed is reduced, on the order of 
the object’s volume-to-surface-area ratio divided by the nominal element size. Third, for a given numerical integration order, fewer integration points 
are required for surface vs. volumetric elements. 
 To demonstrate the capabilities of this approach, we employed one of the segmented brain datasets from the OASIS repository [4]. Shown in 
Figure 1, the computational phantom was composed of CSF, white matter and grey matter surfaces (the skull surface was unavailable for privacy 
reasons), each of which was generated via Marching Cubes and then smoothed and decimated to ~200,000 linear triangles each. An axial acquisition 
was simulated using a 10-mm slice thickness, 175×207-mm2 field-of-view, and a 64×72 matrix zero-padded to 128×144. The relative magnetizations 
were prescribed to produce a T1W image with CSF-suppression, and the slice profile was assumed to be ideal.  

Results and Discussion 
As shown in Figure 2, numerical integration of the surface triangulation produced a remarkably realistic-looking image of the brain. The simulation 
required about 3 minutes on a 2.13 GHz Macbook Pro, and storage requirements for the entire phantom were a modest 25Mb. Although these storage 
requirements are comparable to a voxelized phantom resolved to about 1 mm, it should be appreciated that the triangulated phantom resolves 
structures well below this level. To achieve a similar level of accuracy, a voxel-based phantom would require a substantial increase in resolution, 
bringing with it significant increases in storage and CPU requirements for the FFT-based MRI simulations. 

Conclusions 
We have presented an efficient MRI simulation technique that directly exploits the natural description of complex objects by surface triangulations. 
Although demonstrated here for objects possessing spatially-uniform tissue properties, this approach can be generalized to nonuniform tissue 
properties or magnetizations by decomposing m(x,t) into complex exponential (i.e., Fourier) components. 
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Figure 1 – Mid-sagittal view of the triangulated brain phantom. 

The box indicates the location and thickness of the simulated image.  
 

Figure 2 – Simulated axial T1W image of the brain 
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