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Introduction: Streamline tractography methods [1] aim to trace the path of white matter fiber tracts using the local fiber-orientation estimates derived from diffusion-
weighted MRI (DWI). Uncertainty in DWI fiber tracking comes from several sources, including noise, partial volumes within voxels, and complex fiber architecture 
that cannot be modeled by the diffusion tensor (DT) [2]. Heuristic priors on the local fiber orientation, such 
as a restriction on the curvature of the fiber pathway, or spatial regularization of diffusion tensors in local 
neighborhoods [3], are often used to reduce erroneous streamline traces. This work leverages an atlas of 
diffusion-tensor images to inform the prior probability of the local fiber orientation. The prior is evaluated 
as part of a Bayesian framework for probabilistic tractography [4]. 
 
Methods: Diffusion weighted data acquisition: Eleven subjects were scanned in a Siemens Trio 3T 
scanner. Reconstructed voxel dimensions were 2.2 mm isotropic on a grid of 112×112, with 57 contiguous 
slices. The DWI protocol was 12 measurements at b=0 and 30 at b=1000 s/mm2, each at independent 
gradient orientations spread isotropically on the sphere. The b=1000 measurements were repeated three 
times, giving a total of 102 DW images including those at b=0. A multi-channel head coil was used with 
Siemens GRAPPA parallel imaging (factor 2.5). Ethical approval was obtained for the scanning protocol. 
Atlas construction: The white matter atlas is generated from the DT images of 11 healthy adult subjects 
using an iterative procedure [5] that leverages a high-dimensional tensor-based registration algorithm to 
explicitly optimize tensor orientation [6]. The atlas contains eleven diffusion tensors in each voxel, each 
with a principal eigenvector e1. The mean orientation and anisotropy is shown on the left in Fig 1. The 
dyadic tensor in each voxel is D = (1/11) ∑i e1i e1i

T, which has eigenvalues t1 ≥ t2 ≥ t3, where t1 + t2 + t3 = 1. When the tensors are perfectly aligned, t1 = 1 and when they 
are uniformly distributed, t1≈ t2 ≈t3 ≈1/3. The right image in Fig. 1 shows t1.  
Bayesian PDF estimation: The tractography algorithm is based on the Bayesian framework presented 
by Friman et al [4]. The posterior distribution on the fiber orientation x, given the DW data Δ and the 
“nuisance” parameters θ is P(x, θ | Δ) = P(Δ | x, θ)  P(θ) P(x) / P(Δ). We use the “constrained model” of 
the diffusion data, that is, the minor diffusion tensor eigenvalues are equal, yielding a five-parameter 
model of a diffusion-weighted measurement S = S0 exp(-αb) exp(-βb[g•x]2), where S0 is the estimated 
signal at b=0, g is the gradient direction, and α and β are positive scalars. The nuisance parameters are 
[S0, α, β]. These parameters have Dirac priors as suggested in [4], allowing the posterior to be evaluated 
by densely sampling the likelihood over the sphere. The key difference between [4] and the present work 
is that Friman et al use a prior on x that depends on the previous direction, so P(x) for step i is 
proportional to the curvature between the current orientation and the previous one. This prior is applied 
equally to all paths in the brain. We use an atlas prior P(x) ∝ exp(κ [m•x]2), where m is the principal 
eigenvector of the dyadic tensor, i.e. the mean of the 11 fiber orientation estimates for the voxel in the 
atlas, and κ is a scalar parameter that describes the concentration of the distribution, which is high when 
there is good alignment of the orientations in the atlas. We calculate m and κ from the dyadic tensors in 
the atlas, after warping the dyads into the subject space using the algorithm in [6]. The procedure for 
fitting κ comes from Mardia and Jupp [7]. When κ = 0, the distribution is uniform, as κ increases the 
probability density function (PDF) P(x) becomes more concentrated about m. 
Probabilistic tractography: Given the posterior PDF on x in each voxel, tracking proceeds from a seed 
point in steps of 0.5 mm, using the interpolation scheme described in [8]. We track 1000 from each seed 
point, with the fiber orientations in each voxel randomly sampled from the posterior distribution. The 
tracking stops if the streamline reaches the surface of the brain, if it intersects itself, or if it curves by 
more than 80 degrees over the largest voxel dimension (2.2 mm). The tractography method, including 
the Bayesian PDF estimation is implemented in the open-source Camino toolkit [9]. 
Results: We demonstrate the method in one of the atlas subjects. Seed regions of interest (ROI) were 
defined manually in the image space of the subject. The connectivity of each seed ROI to another voxel 
in the brain is defined as the number of probabilistic streamlines that intersect the voxel. The results are 
thresholded for display; connectivity greater than 1% of the total number of probabilistic streamlines in 
the ROI is shown. The results are rendered within the T1-weighted image of the subject using MRICro 
[10]. The results in Fig. 2 show seed regions placed (from top) in the middle cerebellar peduncle, the 
right cingulum, and the fornix. These paths are difficult to track because of their high curvature and 
proximity to other whiter matter tracts. In all cases, the atlas prior increases connectivity along the 
pathway and allows the tracking to include more of the structure. 
 
Conclusions: The atlas provides an anatomically-based prior that appears to improve tractography along known pathways. The prior is derived directly from the study 
population after normalization. Additionally, the atlas prior is specific to the local white-matter structure in the population, whereas heuristic curvature priors are 
typically specified once for the entire tract, regardless of local anatomy. Limitations in the present work include the small sample size, which we shall increase in future 
work. The prior is implicitly weighted to account for disagreement between the atlas mean and the subject’s diffusion-weighted data, because the subject is part of the 
atlas and hence disagreement between the subject and the rest of the population always decreases the concentration of the prior. Future work will include testing on 
subjects not used in the atlas construction. Another innovation, which may be possible with a larger data set, would be to use a more complex prior distribution, such as 
the Bingham distribution, that can model a prior PDF with elliptical contours. 
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Fig. 1: Anisotropy of the atlas after 
transformation into subject space (left) and the 
first eigenvalue of the dyadic tensor.  

Fig. 2: tracking with no prior (left) and the atlas 
prior (right). The arrows point to the seed ROIs. 
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