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Introduction: Bunched Phase Encoding (BPE) has recently been proposed as a new 
fast data acquisition method in MRI [1, 2]. In BPE, data are acquired along zigzag 
k-space trajectories using rapidly oscillating gradients along the PE direction. 
Sampling frequency of BPE is higher than that of normal acquisition. Since BPE 
acquisition scheme is comparable to acquiring multiple PE lines in a single readout, 
the total number of TR cycles and hence the scan time can be reduced. In BPE, 
zigzag k-space trajectories often need to be measured to reconstruct images because 
actual trajectories often deviate from designed trajectories due to eddy currents. The 
trajectory measurement usually needs to be done only once unless the imaging plane 
is changed. However, trajectories have to be measured when the scanning plane is 
changed because different gradient coils are used to produce the gradient 
waveforms. Although trajectory measurement is not technically difficult, it is 
sometimes cumbersome in practice. Furthermore, measurement errors are 
unavoidable even if sophisticated measurement methods are used. These facts give 
rise to difficulties in actual implementation of BPE. In this study, we show an 
improved BPE acquisition method that does not require k-space trajectory 
measurement. In our newly proposed method, variable density (VD) zigzag 
trajectories are used to acquire k-space data, i.e. the Nyquist criterion is satisfied 
only in the central portion of k-space and the other k-space regions are sampled with 
a PE step size that is beyond the Nyquist limit (Fig.1a). The newly proposed method 
is referred to as ‘VD-BPE’. In VD-BPE, the central k-space data are taken 
advantage of to compute the k-space trajectories. Images are reconstructed based on 
the computed trajectories. VD-BPE obviates the need for cumbersome k-space 
trajectory measurement and achieves accurate image reconstruction. VD-BPE is 
quite useful and facilitates implementation of BPE in practice.  
Methods: It is assumed that a zigzag trajectory used in BPE consists of repetition of the same oscillation pattern. For 
example, Fig.1 shows that there are four samples in each oscillation (Fig.1b) and that multiple sets of this oscillation 
form a zigzag trajectory (Fig.1a). In Fig.1b, αi (1≤i≤m, where m is #samples in each oscillation) denotes the distance 
of each samples from the reference line along the PE direction. The reference lines are set at every qΔky along the PE 
direction, where q is a reduction factor of BPE andΔky is defined as 1/(FOVy). In VD-BPE, all αi are computed from 
the central data that satisfy the Nyquist criterion. Figure 2 shows a flow chart of VD-BPE. A low pass filter is first 
applied to the central data along ky direction. i-th datum is extracted from each oscillation. Each data subset that 
consists of i-th datum from each oscillation is inverse Fourier transformed. Note that this sub-image shows aliasing 
artifacts only along x direction because the Nyquist criterion is met along ky direction for the central data.  m sets of 
these aliased sub-images are decomposed using αi to reconstruct an image with a prescribed FOV. Every αi is first 
set to zero. αi are updated after each iteration. The central k-space data are computed based on the decomposed image 
and the current αi.  i-th datum in each oscillation is extracted from the computed k-space data to form a data subset. 
An IFT is performed on each data subset to reconstruct an aliased sub-image. For each i, phase difference between the 
aliased sub-image reconstructed from the computed data and that reconstructed from the original data is measured. 
Each αi is updated based on this phase difference. These updated αi are then used to decompose m sets of the aliased 
sub-images reconstructed from the original data. The procedures described above are repeated until αi are converged.  
    MR experiments were performed to test the VD-BPE using a 1.5 Tesla Siemens Sonata Scanner. A resolution 
phantom was scanned using a FISP sequence with TE/TR=10.0/20.0ms in this experiment. The target image matrix 
size was 256 x 256. A zigzag trajectory we designed consisted of 128 oscillations. Eight samples were acquired in 
each oscillation, i.e. m=8. Reduction factor was set to two, i.e. q=2. The total number of TR cycles was 138, i.e. 128 with 
additional 10 at the central k-space. Six iterations were performed to compute αi.  
Results: Figure 3 shows (a) an image reconstructed using initial values of αi, i.e. 
all zeros, (b) that reconstructed using α i after the first iteration, and (c) that 
reconstructed using αi after six iterations. Aliasing artifacts observed in image (a) 
are reduced in image (b). The artifacts are almost negligible in image (c). These 
results indicate that trajectories computed using VD-BPE are quite accurate, thereby 
enabling us to reconstruct images without aliasing artifacts.  
Discussion and Conclusions: In VD-BPE, since the central data are acquired with 
the Nyquist criterion fulfilled along ky direction, each sub-image in Fig.2 shows 
aliasing artifacts only along x direction. These aliasing artifacts that result from kx 
subsampling can be removed because all kx coordinates of the acquired data are known. Therefore, if aliasing 
artifacts appear in the decomposed image (Fig.2), they result from the data shift along ky direction. We can take advantage of this fact to compute the ky coordinates, i.e.
αi. In some parallel imaging techniques such as VD-AUTO-SMASH [3] and GRAPPA [4], k-space data are fully sampled only in the central k-space and sparsely 
sampled in the other k-space regions to accelerate the acquisition. These techniques do not require calibration or prescan since the central data can be used as ‘self-
calibrated signals’. VD-BPE is analogous to these parallel imaging methods in the sense that both methods use the central data to calculate parameters that are essential 
for image reconstruction. The newly proposed VD-BPE is a quite useful technique that enables us to readily implement BPE in practice. 
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Fig.1. VD-BPE acquisition 

Fig.2. A flow chart of VD-BPE 

Fig.3. Reconstructed images 
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