
Figure 2: Optimal dual density spiral design (left). The switch between densities is clearly seen in the magnitude gradient. Our 
waveform design for the rosette trajectory (right) is time optimal unlike the design in [4]. 
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Introduction: The design of time-optimal gradient waveforms is an important, yet difficult problem. A common approach is to first design a k-space 
curve and then its associated gradient waveforms [1-4]. To design the gradients one must find the optimal switching times between slew-limited 
accelerations, decelerations and gradient limited regions, this can be difficult if there are many. Here, we provide a complete, fast and simple non-
iterative solution for arbitrary multi-dimensional k-space trajectories that avoids this difficulty. The approach can be used to design waveforms for simple 
as well as complicated trajectories. The user must provide a path, and the algorithm will return the gradients that will traverse that path in minimum time. 
It is important to mention that some optimal gradient designs that exist in the literature either solve for 1D waveforms [5], or provide waveforms that 
traverse k-space from one point to another not on a specific path [6-7]. 
Theory: Designing the time optimal gradient waveform is equivalent to a similar problem in optimal control of navigating a robotic arm along a given 
path [8]. Finding the optimal switching times can be avoided by formulating the hardware and path constraints in the Euclidean arc-length 
parametrization. Since the path is already set, it suffices to find the right velocities, i.e., the gradient amplitudes for each point along it. In the algorithm 
specified in Fig. 1, we first describe the curve as a function of the Euclidian arc-length s, i.e., C(s). We then express the hardware constraints (slew-rate 
and maximum gradient) in the arc-length parameterization and get a differential inequality, which expresses the allowed rate of acceleration dv/ds at 
points along the curve. It is shown in [8,9] that the optimal velocity for each point along the curve can be found by integrating an ordinary differential 
equation (ODE) forward and backward and taking the minimum solution. Finding the gradient waveform from the velocity is straightforward. 

Methods and Results: The algorithm was implemented using MatlabTM  and C programming language. Derivative operations were approximated by 
finite differences. Numerical integrations were approximated by the trapezoid method. The ordinary differential equations (ODEs) were solved using a 
4th order Runge-Kutte method [10]. Cubic-spline interpolation was used for interpolating the curve when needed. As an example, we applied the method 
to design a dual density spiral and a rosette [4] trajectory. Both resulting waveforms are time-optimal. It is important to mention that the rosette design in 
[4] is NOT time optimal. The run-time for the C implementation was around 0.25 seconds. 
Discussion: The proposed method provides a simple and fast general solution to design time-optimal gradient waveforms for any trajectory. This 
approach can also be used to design waveforms by prescribing a parametric curve and then designing the waveforms for it.  
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submitted (http://www.stanford.edu/~mlustig/timeOptimalGradientDesign.pdf). [10] Boyce et al, Elementary Differential Equations. 6th ed 1997 
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Figure 1: Outline of the algorithm (left) and a simplified example 
(right). (a) Constant arc-length curve. (b) The time-optimal curve. (c) 
The H/W constraints and ODE solutions. (d) Resulting time-optimal 
gradient waveforms. (e) Either the magnitude gradient or slew-rate are 
maximized – a necessary condition for optimality. 

g* = TimeOptimalGradient(C(s) , g0, gfin, Gmax , Smax) { 
compute curvature: κ(s) = |Css(s)| 
compute: α(s) = min {γ Gmax , [γSmax/κ(s)] ½} 
define: β(s, st) = [γ2Smax2 - κ2(s)st4] ½ 
set v+( 0) = γg0 , integrate  ODE forward: 
 dv+(s)/ds =   1/ v+(s) β(s, v+(s))  if  v+(s) < α(s) 
                       dα(s)/ds                    otherwise 
set v-(L) = γgfin , integrate  ODE backward: 
 dv-(s)/ds =   -1/ v-(s) β(s, v-(s))  if  v-(s) < α(s) 
                       dα(s)/ds                    otherwise 
set v*(s) = min{ v+(s), v-(s) } 
compute: s*(t) using the inverse of  t*(s) = 0

S∫1/v*(σ)dσ 
compute: C*(t) = C(s*(t)) 
compute: g*(t) = 1/γ dC*(t)/dt 
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