Therdationship between fMRI and MEG: Visual contrast response
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Introduction Recent studies [e.g. 1] have shown that a combination of functional magnetic resonance imaging (fMRI) and
magnetoencephalography (MEG) may provide insight into the neuronal basis of the BOLD effect. The neuromagnetic field measured
in MEG is thought to be largely induced by post-synaptic currents in the dendrites of active, cortical pyramidal cells. Attwell and
Laughlin [2] have argued that the majority of energy expended in the human brain is also related to post synaptic events, suggesting
that if the fMRI BOLD response is truly a measure of energy use in the brain, it should correlate strongly with the measured
neuromagnetic response in MEG. Here, we investigate the correlation between evoked and induced MEG signals and the BOLD
response elicited by a simple visual stimulus. Further, we assess the linearity of each of the MEG and BOLD responses to visual
stimuli of varying contrasts.

Methods: Five healthy subjects took part in the study. The paradigm comprised a sinusoidal drifting grating, presented in a circular
window with a visual angle of 5°. The circle was shifted through an angle of 3° into the lower left hand quadrant of the visual field.
Five Michelson contrasts (0, 0.125, 0.25, 0.5 and 1) were presented pseudo-randomly with a stimulus duration of 4secs. To maintain
attention, on stimulus cessation, subjects executed a button press to indicate the contrast of the stimulus. Trial length was 8secs in
MEG with 20 trials per contrast and 16 secs in fMRI, with 8 trials per contrast. MEG data were acquired at a sample rate of 600Hz,
on a 275-channel CTF system, in third order gradiometer configuration. Co-registration to anatomical MRI was performed using
head digitisation (Polhemus Isotrack). Contiguous axial slices covering the visual cortex were acquired on both 3T and 7T Philips
Achieva system running GE-EPI (3T:- TR=2000ms, TE=40ms, 3x3x3mm’ voxels, 192mm FOV, 18 slices, SENSE factor 2) (7T:-
TR=2000ms, TE=25ms, 2x2x2mm"’ voxels, 156mm FOV, 15 slices, SENSE factor 1.5).

Data Analysis: MEG data were analysed using synthetic aperture magnetometry (SAM) [3]. Spatial localisation of oscillatory power
changes in the beta (15-30Hz) and gamma (60-80Hz) bands was achieved by comparison of an active contrast window of 0-3.9s to a
passive contrast window of 4.1-7.9s. Visual evoked fields were localised with an active window of 0-0.3s and a passive window of 6-
6.3s. Pseudo T-stat images (1mm’ resolution) were created showing regions of activity within these bands. Virtual sensor traces were
extracted from peaks of activity in the SAM images to show time courses of oscillatory power. These were obtained by applying a
Hilbert transform to the virtual sensor data and averaging across trials. Linearity of the response was assessed by integration of the
Hilbert envelope. An average signal value taken over the rest period was used as baseline for integration. Areas of significant
(p=0.05 corrected) BOLD contrast were identified using SPMS5. These regions of interest (T-stat >5.5) were then used for spatial
localisation. Peaks within the SPM were used to define seed voxels with T-stat>10. 9mm cubic volumes surrounding the seed voxels
were used to obtain average time-courses of the haemodynamic response. Linearity of the BOLD response was assessed by
integration of the BOLD time course. An average signal value during the O contrast stimulus was computed and taken to be the
baseline for integration.

Results and Discussion: Figure 1 demonstrates the excellent spatial co-localisation of the fMRI BOLD response and MEG
responses. Both localise to the centre of the primary visual cortex, with activity of lower T-stat in the lateral visual areas. This Figure 1: Spatial localisation in
experiment achieves spatial separation of the various MEG and therefore provides a method of determining the extent to which each a single representative subject of
contributes to the BOLD response. This can be seen in Figure 1 where the peak in gamma activity (¥>3) and the visual evoked field BOLD responses a) 3T, b)7T
(T>6) localise to the contra-lateral central visual field, in agreement with the global maximum of the BOLD response (image and MEG data c) B band d) y
threshold T>5.5 for 3 and 7T). The beta band activity (T>2) however exhibits bi-lateral activity and in other slices is also found in the | band and e) Visual evoked field.
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