Determination of Alveolar Oxygen Partial Pressure in Rat Lung using Spin-Spin Relaxation Times of ³He and ¹²⁹Xe at Low Magnetic Field Strength

R. Kraayvanger^{1,2}, C. Bidinosti³, W. Dominguez-Viqueria^{1,2}, J. Parra-Robles², M. Fox^{1,2}, W. Lam², and G. Santyr^{1,2}

¹University of Western Ontario, London, Ontario, Canada, ²Robarts Research Institute, London, Ontario, Canada, ³University of Winnipeg, Winnipeg, Manitoba,

Canada

Introduction: Quantitative assessment of alveolar oxygen partial pressure (p_AO_2) in the lung has the potential to become a remarkably useful tool in the diagnosis and monitoring of respiratory disease. Previously, quantification of p_AO_2 has been demonstrated, both in vivo and in vitro, through the study of oxygen's effect on the spin-lattice relaxation time, T_1 , of hyperpolarized ³He [1]. However, this approach requires careful calibration of the RF pulses, and can be time consuming. More recently, it has been demonstrated that p_AO_2 can be measured using the spin-spin relaxation time, T_2 , of ³He at very low magnetic field strengths [2] where the contribution of susceptibility-induced relaxation is insignificant. T_2 can be measured with the Carr-Purcell-Meiboom-Gill (CPMG) sequence which has the inherent advantage of being able to reduce experiment time, increase experiment accuracy, and eliminate the need for extremely precise flip angle calibrations. To our knowledge, CPMG has not been applied to hyperpolarized ¹²⁹Xe measurement of p_AO_2 at low fields. ¹²⁹Xe has the advantage of being highly abundant (i.e. inexpensive) compared to ³He and therefore may permit widespread use of the technique. We explore further the use of CPMG measurements for the determination of alveolar oxygen partial pressure using both hyperpolarized ³He and ¹²⁹Xe gases in phantoms and in vivo in rat lung at low magnetic field (0.07T). We present relaxivity relationships for oxygen's effect on ³He and ¹²⁹Xe spin-spin relaxation, and test the assertion that $T_2=T_1$ in the limit of rapid CPMG pulse rates at low magnetic field strength [2,3].

Methods: Hyperpolarized ³He gas was produced using a turn-key polarizer (HeliSpin, GEHC). Hyperpolarized ¹²⁹Xe gas was produced using a home-built spin exchange optical pumping system [4]. Plastic syringes were prepared with varying amounts of pure O₂ gas and the remaining volume filled with hyperpolarized gas just prior to signal acquisition. NMR experiments were performed on a home-built resistive MR imaging system [5] at a field strength of 0.07T, and controlled using an Apollo console (TecMag, Houston, TX, USA). In vivo spin-spin relaxation times were measured using ³He gas in a 364g Sprague-Dawley rat ventilated with a custom ventilation system and a known p_AO_2 of ~11% using a University-approved animal care protocol. A CPMG pulse sequence [6] with an inter-echo time of 2.64ms and 8192 echoes was used to measure T₂ for varying concentrations of O₂ in vitro, and in vivo. Polarizations at the time of initial signal acquisition were estimated to be 25-30% for ³He and 5-10% for ¹²⁹Xe. Total experiment time was 20-25 seconds. T₂ was determined from the exponential decay of the echo amplitudes using a non-linear least squares fit.

Results and Discussion: The decay time measured by the CPMG sequence $(T_{2,CPMG})$ can be broken down into constituent decay mechanisms according to: $1/T_{2,CPMG} = 1/T_2 + 1/T_{2,diff}$ [2], where T_2 is the true transverse relaxation time, which is assumed to be dominated by dipolar coupling with paramagnetic oxygen [3], and $T_{2,diff}$ is the decay due to diffusion through magnetic field non-uniformities (principally susceptibility in the lung). Though low magnetic field reduces the diffusion term, it can still be significant due to the high diffusivity of gases. Therefore, we derive a linear relationship of the form: $1/T_{2,CPMG} = \kappa P_{02} + \chi$ for both ³He and ¹²⁹Xe (Fig.1), where the y-intercept χ is proportional to the effect of diffusion on our measurements; κ is the slope of our linear fit; and P_{02} is the oxygen partial pressure in Pascals. The slope, κ , is calculated as $5.80 \times 10^{-6} s^{-1}Pa^{-1}$ for ³He and $4.20 \times 10^{-6} s^{-1}Pa^{-1}$ for ¹²⁹Xe. A spin-spin relaxation time of $22.6 \pm 1.6s$ was measured in vivo in the rat lung for ³He. A lengthening of the measured $T_{2,CPMG}$ in vivo compared to phantom studies is seen and is attributed to the limited diffusion of the ³He gas within the lung. This value is equal, within experimental uncertainty, to the spin-lattice relaxation time measured previously for ³He under comparable ventilation conditions [1], demonstrating the feasibility of performing p_AO_2 measurements of

the lung in vivo using measurements of low field T_2 of ³He or ¹²⁹Xe in the lung. This also supports the assertion that when diffusion induced relaxation through susceptibilities becomes negligible using a combination of low field and fast CPMG, a regime in which $T_2=T_1$ is reached.

Conclusions: We have presented a method of measuring oxygen partial pressure at low fields with hyperpolarized gases using spin-spin relaxation times in vitro obtained with CPMG. We obtain a linear relationship between $1/T_{2,CPMG}$ and the oxygen partial pressure, with values of $5.80 \times 10^{-6} s^{-1} Pa^{-1}$ and $4.20 \times 10^{-6} s^{-1} Pa^{-1}$ for the relaxivity of ³He and ¹²⁹Xe in the presence of O₂, respectively. κ for ³He is greater than that for ¹²⁹Xe, however the low cost of using ¹²⁹Xe in experiment makes it a more desirable candidate for p_AO_2 measurement in the future. A T₂ of 2.6 ± 1.6 s was also measured using ³He in rat lung.

References: 1) Ouriadov, A. *et al.* ISMRM 15th Scientific Meeting #2790 Berlin, Germany 2007. 2) Bidinosti, C. *et al.*, *J Mag Res* **162**, 122 (2003). 3) Saam, B. *et al.*, *Phys Rev A* **52**, 862 (1995). 4) Cross *et al.* J Mag. Reson **162**, 241 (2003). 5) Dominguez-Viqueira, W. *et al.* ISMRM 15th Scientific Meeting #3300 Berlin, Germany 2007. 6) Meiboom, S. and Gill, D. *Rev Sci Instr.* **29**, 688 (1958).

Acknowledgments: This work was supported by CIHR, NSERC and Merck Frosst Canada. The helium polarizer was made available by Merck-Frosst. Thanks to Heather-Anne Cadieux for assistance with animal care.