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Introduction: A new pulse technique for counteracting RF inhomogeneity at high fields has been developed. The method, inspired from nuclear magnetic resonance 
quantum computing [1], makes use of the detailed knowledge of the voxels' B1 and ΔB0 amplitude 2D histogram to generate, through an optimization procedure, gates 
where the flip angle is made uniform. The use of such 2D histogram instead of the parameters’ joint spatial distribution decreases substantially the complexity of the 
problem, allowing an optimization algorithm to find an RF pulse solution in less than two minutes. In addition, the procedure is based on an exact calculation and does 
not use any linear approximation. The 3D brain in vivo images obtained at 3 T yield a reduction of the standard deviation of the sine of the flip angle by a factor of up to 
15 over a whole human brain, around the target value, compared to when a standard square pulse calibrated by the scanner is used. Finally, calculations tend to show 
that the new designed pulses can be 2 to 3 times less energetic than standard BIR4 adiabatic pulses achieving similar performance.  

Theory: Adiabatic and composite pulses have one thing in common: their phase is not constant over time. If it was not the case, the spin flip angle (FA) would be 
proportional to the integral of B1 with respect to time. A dispersion of B1 then would necessarily imply a dispersion of the FA. The new kind of pulses reported here, 
called “strongly modulating pulses” in [1], exploits both this phase variation principle and the fact that for constant B1 amplitude and a phase varying linearly in time, an 
analytical solution of Schrödinger’s equation exists. Using a spinor notation, the Hamiltonian H of a spin ½ at a given position r under a circularly polarized radio-
frequency (RF) field of constant amplitude B1(r) , in a reference frame rotating at the carrier frequency, is given by (setting h/2π=1 for convenience):  
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where ΔB0(r) is the external static field offset, perpendicular to B1, γ is the gyromagnetic ratio (in rad/T), σx,y,z are the Pauli spin matrices, and Φ(t) is the time-dependent 
phase of the RF field. When Φ(t) = ϕ0+ωt, where ϕ0 is the initial phase, t is the time and ω the angular frequency, the Hamiltonian is time-independent in the new frame 
rotating at ω so that Schrödinger’s equation can be solved analytically. So far however, the pulse would not allow for the homogenization of the spin FA, whatever the 
parameters used. The idea therefore is to implement a cascade of N such square pulses evolutions, each being parameterized by a duration τk, a frequency ωk, a B1,k 
amplitude and an initial phase ϕk to yield for net propagator: 
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where the spatial variation here is introduced via B1 and ΔB0. Once applied on the initial wavefunction, the calculation of the FA follows. The dynamics now are rich 
enough to homogenize the FA and yet, their computation is quickly performed, due to the linear time-dependence of the phase. A genetic algorithm combined with a 
direct search method is used to navigate in this 4N-dimensional parameter space to find a satisfying RF solution, N being gradually increased until the algorithm 
convergence criteria are met. Yet, optimizing the spins' FA by calculating their evolution in each voxel would be a formidable task for a high resolution 3D image. But 
if the ΔB0 and B1 3D maps are known via a measurement, then the pulse performance can be calculated by looping over a few tens of {ΔB0, B1} values and using their 
corresponding weights in the bi-dimensional histogram, thereby greatly reducing the complexity of the optimization problem. 

Methods: We used the actual flip angle imaging (AFI) sequence reported in [2, 3] to measure B1 and ΔB0 over the volunteer’s brain using a standard square pulse. The 
same sequence was used to quantify the strongly modulating pulses’ performances. We tested a series of 3 strongly modulating and square pulses (30°, 60° and 90°) on 
a human subject using a 3 T Siemens Trio scanner (Siemens, Erlangen, Germany) and a quadrature head coil, and took only the brain-masked voxels to compute the 
{ΔB0, B1} amplitude 2D histogram to design the pulses. The strongly modulating pulses were designed on the fly during the volunteer’s exam. 

Results and Discussion: The means of the sine of the FA ± its standard deviation over the 
whole brain are provided in the table. The strongly modulating pulses clearly outperform the 
standard square pulses calibrated by the scanner. The figure provided shows the sine of the 
FA over three orthogonal slices of the volunteer’s brain, for the 90° pulse experiment. To 
compare the pulses’ energy demands with the adiabatic pulses’ ones, we selected the tanh/tan 
BIR4 pulse (5 ms duration) as suggested in [4] and searched via calculations for the 
parameters that minimize the energy (integral of B1

2(t) with respect to time) in addition to 
satisfy a performance criterion commonly reached by the strongly modulating pulses (within 
0.01 of the target value, and standard deviation ≤ 0.01). Once found, we computed the energy 
ratios EBIR4/ES.Mod. (see table). The calculations therefore tend to show less energy demands 
for the strongly modulating pulses. The strongly modulating pulses reported here only apply 
to non-selective 3D spoiled gradient echo sequences. Further work is needed to extend their 
applicability to selective pulses and spin echo sequences. 

Conclusion: We have developed a new kind of pulses compensating for RF inhomogeneity. 
Due to their parameterization and the use of a {ΔB0, B1} amplitude 2D histogram, the spins’ 
dynamics calculation is performed quickly, thereby allowing an extensive search in 
parameter space. The RF pulse solutions returned perform much better than the square pulses 
automatically calibrated by the scanner, sometimes by up to a factor of magnitude. Finally, 
the calculations tend to show less energetic demands than for adiabatic BIR4 pulses, making 
the technique particularly attractive for in vivo applications at high fields. 
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Figure: Measured sine of the FA for a square pulse calibrated by the scanner (top row), and a 
90° strongly modulating one (bottom row). Three orthogonal views are shown (from left to 
right: sagittal, axial and coronal slices). 

 

 30° Pulse 60° Pulse 90° Pulse 

Square Pulse 0.445 ± 0.058 0.791 ± 0.080 0.965 ± 0.046 

S. Mod. Pulse 0.490 ± 0.019 0.848 ± 0.012 0.999 ± 0.003 

S. Mod. Duration 1890 µs 2311 µs 2550 µs 

EBIR4/ES.Mod. 2.5 3.3 2.1 
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