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Introduction:  Spectral-spatial RF pulse design is challenged by requirements 
of high spectral bandwidth, sharp spatial profiles, short excitation times and 
peak B1 constraints.  These challenging requirements are especially prevalent 
for high-field applications, as well as when imaging hyperpolarized C-13 
metabolites with significant spectral dispersion and a gyromagnetic ratio ¼ 
that of protons [1,2].  A novel approach to spectral-spatial RF design is 
presented that addresses these issues in a systematic and optimal manner. 
 
Methods and Results: The spectral-spatial design begins as illustrated in Fig. 
1b with the specification of the desired spectral profile.  This profile includes 
only the bands of interest as in [3], and does not specify the response 
elsewhere.  The minimum-time gradient sublobe is then designed that meets 
the specified spatial time-bandwidth subject to system constraints and the 
specified fraction of the gradient lobe ramps allowed for versed RF excitation 
[4].  The following gradient lobe is then either a replica of opposite polarity (for 
echoplanar designs) or a minimum-time rewinder (for flyback designs).  This 
gradient design determines the maximum spectral sampling frequency Fmax. 
 
A range of spectral sampling frequencies Fs from 0 to Fmax is then evaluated to 
determine if the specified spectral profile extends outside the spectral 
bandwidth, and if so, whether the aliased specifications are self-consistent.  
For each valid sampling frequency Fs, minimum-amplitude gradient sublobes 
with the corresponding duration are designed.  
 
Minimum-time complex-coefficient linear-phase or minimum-phase filters that 
meet the spectral requirements for each Fs are then determined using an FIR 
filter design method based on convex optimization and spectral factorization 
[5]. The advantage of the convex optimization approach over a complex 
Parks-McLellan multiband design as used in [6,7] is that the power in the 
transition bands can be explicitly minimized, thereby reducing the power of the 
RF pulse.  It should be noted that the linear-phase design is truly linear-phase 
unlike in [3]. 
 
For each spectral filter corresponding to a given Fs, the composite spectral-
spatial pulse is designed with correction for the non-uniform kz-t sampling as in 
[8] to eliminate chemical-shift misregistration within the Nyquist bandwidth.  
This technique also prevents degradation of the off-center spectral profile for 
echoplanar or opposed-null spectral-spatial designs.   For flyback pulses, this 
approach has been further extended to support large-tip designs using a 2D 
SLR approach similar to that in [9].  After testing all feasible Fs, the pulse that 
best meets the design criteria (be it minimum-time, minimum peak B1 or 
minimum power) is chosen.  
 
Results:  Figure 1 illustrates the design and validation of a 13.4-ms linear-
phase spectral-spatial pulse targeting metabolite products of hyperpolarized 
C-13  pyruvate on a GE Excite 3T scanner (4 G/cm, 15 G/cm/ms).  This pulse 
excites lactate, alanine and bicarbonate by 90°, while exciting pyruvate by only 
3°, thus leaving the pyruvate hyperpolarization largely undisturbed.  Figure 2 
illustrates the validation of the spectral-spatial profile obtained by imaging a 
water phantom with the spectral-spatial gradient on Y, and an additional 
constant gradient on X to mimic the effect of off-resonant spins. Figure 3 
presents a minimum-phase spectral-spatial multiband design targeting lactate-
only excitation at 3T.  Stopbands of 0.002 are obtained for pyruvate and 
bicarbonate even though they are outside the nominal spectral bandwidth. 
 
Discussion:  A novel approach for multiband spectral-spatial design has been 
presented that iterates over feasible spectral sampling frequencies to 
determine the best design according to minimum-time, B1 or power criteria.  FIR filter design based on convex optimization minimizes the energy in 
transition and don’t-care regions, and can provide true linear-phase or minimum-phase spectral responses.  Chemical-shift misregistration correction has 
also been extended to large-tip flyback designs.  Example designs appropriate for spectroscopic imaging of C-13 pyruvate metabolites or C-13 lactate 
imaging at 3T are presented and validated. 
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Figure 1:  a) Flyback gradient and RF (real/imaginary) waveforms 
for a linear-phase multiband spectral-spatial pulse targeting 
metabolic products of C-13 labeled pyruvate at 3T.  b) Excitation 
spectral profile as determined with a Bloch simulator, including 
original multiband specfication (in black).  Lactate, alanine and 
bicarbonate products are all excited by 90°, while pyruvate is 
excited by only 3°. 
 

 
 

Figure 2: Simulated and measured spectral-spatial profiles of the 
multiband excitation pulse showing excellent agreement.  A spatial 
time-bandwidth of 6 and slice thickness of 8 cm was specified. 
Note the excellent chemical-shift registration within the spectral 
Nyquist bandwidth of -765 to +45 Hz. 
 

 
Figure 3: a) Spectral profile of 15.2-ms minimum-phase spatial-
spectral excitation designed for lactate-only excitation of 30° at 3T.  
b) Spectral-spatial profile of the lactate-only excitation.  The 
spectral bandwidth of the excitation was 552 Hz, centered on 
lactate.  A spatial time-bandwidth of 8, and slice thickness of 8 cm 
was specified.  Pyruvate and bicarbonate resonant frequencies 
are outside the effective bandwidth, but the design ensures the 
aliased frequencies are still suppressed. 
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