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Fig. 1 Kalman filtering on numerical simulation of double 
periodic motion waveforms a) 0.2Hz and 1.2Hz waveforms 
b) sudden jump in low frequency component 0.2Hz�0.3Hz 
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Fig. 2 Kalman filtering on center-of-k-space data from a 

continuous cardiac short axis scan. Diaphragm displacement 
(bottom) and ECG triggers (top) are shown for comparison. 

 

 
Fig. 3 CINE SSFP images obtained with prospectively self-

gating, free breathing without gating, and breath-hold. 
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INTRODUCTION 
In recent years, free breathing self-gated CINE acquisitions that correct motion artifacts by detecting motion from the data itself, have mostly used retrospective gating 
[1-4]. Unwanted noise and cardiac motion induced disturbance are filtered out using low pass filters. Retrospective gating is simple to implement but may not eliminate 
motion completely at the k-space center. Prospective or real-time data acquisition gating, on the other hand, can ensure that all data is acquired within a narrow gating 
window [5], offering higher effectiveness of motion suppression and efficiency. The response delay of a low pass filter makes it unsuitable for real time filtering. The 
purpose of this work was to develop a real time filtering algorithm based on the well-known Kalman filter [6], which adaptively estimates motion and suppresses 
measurement noise using Bayesian statistics and a motion model. Its ability to reduce noise and separate cardiac and respiratory components is studied using simulated 
data, in-vivo data and in a free-breathing prospectively self-gated CINE SSFP acquisition of the heart. 
THEORY 
The robust and effective Kalman filter is widely used in aerospace engineering, navigation, robotics, and optimal control theory. It requires a measurement model for 
the observed data and an evolution model for the underlying process using state vectors. At each time step, the state vector undergoes an evolution described by a 
transition matrix. The noise in the measurement and evolution models are assumed to be additive Gaussian with known covariance matrices. For each point in time, the 
Kalman filtering step consists of a prediction (using the evolution model) and a correction (using the measurement model) of the underlying state, that is in essence a 
Bayesian optimal estimation problem. For cardiac imaging, we propose to use the double periodic motion (DPM) model with frequencies ωf (“fast” or heart rate) and ωs 

(“slow” or respiratory rate). The transition matrix for each independent periodic component [x, v] 
(position and speed) is [[1, Δt], [–ω2

Δt, 1]]. For the filter output, only the low frequency component 
from the state vector was retained. 
MATERIALS AND METHODS 
Simulations A ten second numerical waveform (sampling rate 200Hz) was generated as a 
superposition of a 1.2 Hz sinusoid with amplitude of 0.2 and a 0.2 Hz sinusoid with amplitude of 1.0 
– simulating a heart rate of 72 beats per minutes and respiratory rate of 12 breaths per minute. To 
study the robustness of Kalman filtering against changes of the underlying waveform, five additional 
waveforms were constructed where the low frequency component was altered (different shape, a 
sudden jump in frequency/amplitude and a gradual change in frequency/amplitude). To each 
waveform, Gaussian noise (σ = 0.1) was added. Performance of the Kalman filter was measured 
using the root mean square difference (RMSE) with the original 0.2 Hz sinusoid. The “fast” and 
“slow” frequencies used for the DPM model were 1.2 Hz and 0.2 Hz in all cases. 
Experiments Center-of-k-space signal (DC) was continuously acquired at the end of every TR [4,7], 
in an ungated free breathing cardiac short axis SSFP acquisition in five healthy volunteers. For 
Kalman filtering, the model frequencies at each time step were adjusted to the instantaneous heart 
and respiratory as monitored by the scanner during the acquisition. Performance of the Kalman filter 
was measured against low pass filtering by calculated the RMSE. In a second experiment, an initial 
implementation of a prospectively selfgated free-breathing SSFP CINE sequence was performed on 
two healthy volunteers. Two additional calibration scans were obtained before imaging to determine 
the optimal coil and scaling factor for the self-gating signal and the optimal Kalman filter 
parameters. Data acquisition of each cardiac phase (segment) was gated independently using the 
apparent displacement measured by the center-of-k-space signal by the PAWS gating algorithm [8] 
that was modified to satisfy the smooth view order constraints necessary for SSFP imaging. 
RESULTS 
Fig 1a compares the Kalman filter output (red) with the low pass filter output (orange) on a 
simulated double periodic noisy input (green). The response of the low pass filter was markedly 
delayed (group delay here was 2s) versus virtually no delay for the Kalman filter. RMSEs were 
0.035 versus 0.034 (after correcting for the delay), respectively. Fig1b demonstrates the robustness 
of the Kalman filter in removing both noise and the high frequency component when the underlying 
waveform deviates from the model. Here the low frequency component jumped to 0.3Hz (while the 
model still assumed 0.2Hz) Fig 2 shows the Kalman filtered output (red) from center-of-k-space data 
(green) from a cardiac short axis scan. The output correlated very strongly with the simultaneously 
acquired diaphragm navigator displacements (r2=0.96, blue, bottom of the graph). The high 
frequency output compared well with the recorded ECG triggers (top). Fig 3 demonstrates effective 
motion artifact suppression of the self-gated CINE SSFP sequence, using Kalman filtering. 
DISCUSSION 
These preliminary results demonstrate the feasibility of Kalman filtering to remove noise and to 
separate respiratory and cardiac components from the MRI data in real-time for prospective gating of 
the data acquisition to suppress motion artifacts. A double periodic motion Kalman filter was able to 
distinguish between the cardiac and the respiratory component in center-of-k-space data obtained 
from a continuous SSFP short axis heart scan. Kalman filter is an adaptive recursive filtering 
algorithm for estimating the true state of the system immediately from noisy measurement. This 
adaptive filtering without delay makes it very suitable for real-time MRI applications such as 
prospective respiratory gating. A preliminary implementation of a prospectively self-gated CINE 
SSFP sequence demonstrated the feasibility of this real-time data filtering in healthy volunteers for 
reliable self-gating and motion artifact suppression. 
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