MR Quantification of Regional Myocardial Oxygen Consumption Rate

K. S. McCommis¹, H. Zhang¹, R. J. Gropler¹, and J. Zheng¹

¹Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States

Purpose

Myocardial oxygen supply and demand has to match to maintain normal myocardial contractility. Myocardial oxygen consumption (MVO_2), which determines the total myocardial oxygen demand, may provide accurate assessments of this balance in the heart. The purpose of this study is to test the ability of a cardiac MR BOLD method to determine changes in myocardial MVO_2 during pharmacologically-induced hyperemia in both normal and stenotic dogs.

Methods

31 dogs were divided into six groups as seen in the Table. Stenosis was created by an MRcompatible occluder on the proximal left-anterior descending coronary artery (LAD) and stenosis severity was confirmed via Doppler flow reduction. MVO₂ was calculated by the Fick principle: $MVO_2 \propto OEF \times MBF$.

<u>OEF</u> during hyperemia was determined by a two compartment model with myocardial T2 that was measured with a 2-D segmented black blood turbo spin-echo (TSE) sequence [1]. The study was performed in a 1.5 T Siemens Sonata system. The imaging sequence was repeated several times at rest and during either Dipyridamole-induced vasodilation or Dobutamine-induced hyperemia. Rest OEF was assumed to be 0.6, which is based on

values measured in normal dogs using an arterial and coronary sinus blood sampling approach at rest [2]. <u>MBF</u> values, both at rest and during pharmaceutical stress, were determined with a quantitative first-pass perfusion MR method. First-pass images were denoised and MBF maps were created with an algorithm that was developed and validated in our laboratory [3]. MVO₂ values were determined in the stenotic LAD perfused anterior region and the remote left-circumflex coronary artery (LCx) perfused inferior region.

Table. Dog groups.

Group (n)	Stenosis (Area)	Hyperemia
1 (14) 2 (4) 3 (3) 4 (4) 5 (3)	normal 70% 90% normal 50%	Dipyridamole Dipyridamole Dipyridamole Dobutamine Dobutamine
6 (3)	70-90%	Dobutamine

Results

 MVO_2 results can be seen in Figure 1. As expected, in <u>normal dogs</u>, Dobutamine induced a dramatic increase (186%) in MVO_2 (group 4), while injection of Dipyridamole shows only a mild to moderate effect (62%) (group 1). In the anterior

region with <u>LAD stenosis</u>, after the injection of Dipyridamole, a small increase in MVO₂ was observed at 13.8% and 10.7% for the 70% and 90% stenosis groups, respectively, whereas the remote normal LCx region shows 49.1% and 17.3% increases in MVO₂. This is different from conventional wisdom that Dipyridamole would induce no changes in MVO₂, but is consistent with a report using adenosine injection in dogs [4]. With Dobutamine, MVO₂ in the anterior regions increased significantly at 57.9% and 35% for the 50% and 70-90% stenosis groups,

respectively, whereas there were 183.7% and 79% increases in the remote inferior LCx regions accordingly. It is interesting to note that severe single-vessel stenosis not only attenuated the increase in MVO_2 in the stenotic perfused region with Dobutamine, but also attenuated MVO_2 in the remote normal myocardial region, a similar finding in patients with a single LAD stenosis [5]. Figure 2 shows the relationship of the ratio of MBF/MVO₂ in the LAD and remote LCx regions, within Dobutamine groups. There is a marked difference in the normal dogs and stenotic dogs, which again agrees well with a report in patients [5].

Conclusions

Our cardiac MR methods may non-invasively quantify regional differences in myocardial MVO_2 . Evaluation of MVO_2 changes in our coronary artery stenotic dogs reveals similar findings as in patients.

References

- 1. Zhang H, et al. J Magn Reson Imaging 2007;26:72-9.
- 2. Zheng J, et al. Magn Reson Med 2004;51:718-26.
- 3. Goldstein TA, et al. Proceedings of the ISMRM, 2006; p3573, Seattle, WA.
- 4. Hoffman WE, et al. J Cardiothoracic and Vascular Anesthesia 2003;17:495-8.
- 5. Janier M, et al. Am J Physiol 1996;271:H59-67.

Figure 2. Correlation between MBF/MVO₂ ratio for the LAD region and LCX region in normal and stenotic dogs.