Regularized Super-Resolution for Diffusion MRI
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Introduction We present a new regularized super-resolution method, which finds fibre orientations and volume fractions on a sub-voxel scale and helps distinguish
various fibre configurations such as fanning, bending and partial volume effects. We treat the task as a general inverse problem, which we solve by regularization and
optimization, and run our method on human brain data.

Method For a set of image voxels ;, i=1...L, and wavenumbers gy, k=1...M, we have measurements A(l;, q).
From these measurements, we want to find p(S,), a set of model parameters in each of a set of super-resolution

voxels S, where h=1...H. The forward problem is to estimate the measurements A(l;, q) from p(s,). "--.S,'}',?,!!,,,?‘ “'.\

Measurement estimates on the high-resolution grid come directly from the model parameters p(S,), and we can

estimate the measurements at l; by A(Ii LK) = ZE:I HniA(sn, k) , where Wy is a weighting coefficient that

{fn €0} ff.e.}
1= fn 1- fs

accounts for partial overlap between |; and s, and could also account for factors such as the point-spread

function and the slice profile. The inverse problem finds the model parameters from A(l;, gx). We solve the
' Figure 1 Illustration of a sub-voxel s with two voxels of

its 6-neighbourhood, and associated fibre populations.

inverse problem with an optimization procedure to
minimize an error metric between the observed
and estimated measurements, subject to a spatial coherence constraint. For image |, we minimize the
objective function J(I) =T (1) + E(l) , where T(l) is a smoothing term ensuring that transitions of fibre

populations of neighbouring sub-voxels are smooth, « is a weighting coefficient, and E(l) is the error
component defined as E(l) = Zil_:lzl'glzl (A(Ii ,qK) — A(Ii s qk))2 . We use Behrens’ model
[1] with one fibre population so that A(s,qy)=(1— f )exp[— th klzdj + f exp(— td(e-q k)2) , where

f is the volume fraction, eis the orientation of the fibre population, d is the diffusivity and t is the
diffusion time. The model parameter set for sub-voxel s, is p(sy) ={d, f,e} . We fit the model to the
data [2] to find initial values p(l) for each large voxel |, and use nearest neighbour interpolation for

initial values p(S) for each sub-voxel s. The subsequent optimizations use iterative voxel by voxel
Levenberg-Marquardt least-squares minimization. For each sub-voxel S, we use the smoothing

function T(S)=3% ¢ N(s)( fn— fs)2 +(1- |en . esl)2 , where N(S) is the 6-neighbourhood of s. Figure

1 shows a sub-voxel with neighbouring voxels, and the terms used in T(s). The first term in the
smoothing function captures similarity of volume fraction of s with those of its neighbours, and the
second term captures similarity of the fibre orientation of S with those of its neighbours. The
smoothing function rewards similarities between fibre populations in Sand its neighbours, and is
minimized when p(n)=p(s) for Vne N(s) .
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Experiments and Results We use our method on diffusion-weighted human brain data from a
128x128x32 image with 61 diffusion-weighted images with a b-value of 1200 s mm and one
measurement at =0, with eight repeats of each measurement, acquired in a Philips 3T Achieva
scanner. For our experiment, we consider a region of interest of 12x18x14 voxels in size, which
includes part of the corpus callosum and the cingulum bundle, illustrated in Figure 2. We use our
super-resolution method to quarter the slice thickness, thereby quadrupling the spatial resolution. We
reconstruct the fibre populations at this higher resolution. We compare the results of our super-
resolution method with those obtained using linear interpolation, shown in Figure 2. In the region
highlighted in yellow, two distinct fibre populations are present in the corpus callosum (left-right,
red) and in the cingulum (front-to-back, green). At the original resolution (b), partial volume effects
artificially reduce the strength of the anisotropic component. The length of the lines are proportional
to f. Linear interpolation (c) does not help in the partial volume region, and simply interpolates the
low f. However, the super-resolution (d) correctly retains strong orientations by separating the two
directional components and identifies the boundary between the two structures with sub-voxel
accuracy.
Conclusions We can use our method to recover fibre configurations such as bending, fanning, and
partial volume effects. Note that the method is very similar to fitting Behrens’ model with multiple
fibre orientations as in [3], but allows additional spatial separation of distinct directions. Future work
includes considering alternative smoothing functions and using multiple fibre models for each sub-
voxel to distinguish more complex fibre configurations such as genuine crossings from partial volume
effects.
References: 1. T.E.J. Behrens et al, MRM 2003;50:1077-1088. 2. S. Nedjati-Gilani et al, ISMRM
population estimates at the original spatial resolution, (c) fibre 2006;3169 3. T.E.J. Behrens et al, Neurolmage 2007:34(1):144-155.
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Figure 2: (a) FA map with the ROI highlighted, (b) initial fibre
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