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Figure 2: (a) FA map with the ROI highlighted, (b) initial fibre 
population estimates at the original spatial resolution, (c) fibre 
population reconstruction with linear interpolation and (d) 
reconstruction with regularized super-resolution. 
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.f  is the volume fraction, e is the orientation of the fibre population, d is the diffusivity and t is the 

diffusion time. The model parameter set for sub-voxel sh is },,{)( ep fdsh = . We fit the model to the 

data [2] to find initial values p(l) for each large voxel l, and use nearest neighbour interpolation for 
initial values p(s) for each sub-voxel s. The subsequent optimizations use iterative voxel by voxel 
Levenberg-Marquardt least-squares minimization. For each sub-voxel s, we use the smoothing 

function 22
)( )1()()( snssNn n ffsT ee ⋅−+−= ∑ ∈ , where N(s) is the 6-neighbourhood of s. Figure 

1 shows a sub-voxel with neighbouring voxels, and the terms used in T(s). The first term in the 
smoothing function captures similarity of volume fraction of s with those of its neighbours, and the 
second term captures similarity of the fibre orientation of s with those of its neighbours. The 
smoothing function rewards similarities between fibre populations in s and its neighbours, and is 

minimized when )()( sn pp = for )(sNn ∈∀ . 

Experiments and Results We use our method on diffusion-weighted human brain data from a 
128×128×32 image with 61 diffusion-weighted images with a b-value of 1200 s mm-2 and one 
measurement at q=0, with eight repeats of each measurement, acquired in a Philips 3T Achieva 
scanner. For our experiment, we consider a region of interest of 12×18×14 voxels in size, which 
includes part of the corpus callosum and the cingulum bundle, illustrated in Figure 2. We use our 
super-resolution method to quarter the slice thickness, thereby quadrupling the spatial resolution. We 
reconstruct the fibre populations at this higher resolution. We compare the results of our super-
resolution method with those obtained using linear interpolation, shown in Figure 2. In the region 
highlighted in yellow, two distinct fibre populations are present in the corpus callosum (left-right, 
red) and in the cingulum (front-to-back, green). At the original resolution (b), partial volume effects 
artificially reduce the strength of the anisotropic component. The length of the lines are proportional 
to f. Linear interpolation (c) does not help in the partial volume region, and simply interpolates the 
low f. However, the super-resolution (d) correctly retains strong orientations by separating the two 
directional components and identifies the boundary between the two structures with sub-voxel 
accuracy. 
Conclusions We can use our method to recover fibre configurations such as bending, fanning, and 
partial volume effects. Note that the method is very similar to fitting Behrens’ model with multiple 
fibre orientations as in [3], but allows additional spatial separation of distinct directions. Future work 
includes considering alternative smoothing functions and using multiple fibre models for each sub-
voxel to distinguish more complex fibre configurations such as genuine crossings from partial volume 
effects. 
References: 1. T.E.J. Behrens et al, MRM 2003;50:1077-1088. 2. S. Nedjati-Gilani et al, ISMRM 
2006;3169 3. T.E.J. Behrens et al, NeuroImage 2007:34(1):144-155. 
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optimization, and run our method on human brain data. 
Method For a set of image voxels li, i=1...L, and wavenumbers qk, k=1...M, we have measurements A(li, qk). 
From these measurements, we want to find p(sh), a set of model parameters in each of a set of super-resolution 
voxels sh, where h=1...H. The forward problem is to estimate the measurements A(li, qk) from p(sh). 
Measurement estimates on the high-resolution grid come directly from the model parameters p(sh), and we can 

estimate the measurements at li by ),(),(
~
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accounts for partial overlap between li and sh, and could also account for factors such as the point-spread 
function and the slice profile. The inverse problem finds the model parameters from A(li, qk). We solve the 

inverse problem with an optimization procedure to 
minimize an error metric between the observed 

Figure 1 Illustration of a sub-voxel s with two voxels of 
its 6-neighbourhood, and associated fibre populations. 

and estimated measurements, subject to a spatial coherence constraint. For image I, we minimize the 
objective function )()()( IEITIJ += α , where T(I) is a smoothing term ensuring that transitions of fibre 

populations of neighbouring sub-voxels are smooth, α is a weighting coefficient, and E(I) is the error 

component defined as ( )∑ ∑= = −= L
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Introduction We present a new regularized super-resolution method, which finds fibre orientations and volume fractions on a sub-voxel scale and helps distinguish 
various fibre configurations such as fanning, bending and partial volume effects. We treat the task as a general inverse problem, which we solve by regularization and  
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