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Introduction: Correlation analysis of fMRI data has revealed spatially distributed patterns of functionally connected brain regions in both humans 
and laboratory animals under a wide range of conditions, including the “resting state” and in response to different tasks or pharmacological 
challenges. These observations of spatially dispersed yet correlated responses are consistent with the idea that brain function is highly integrated. 
FMRI data may also be represented in a very natural way as a graph or network, in which individual image voxels or anatomically defined structures 
represent the nodes and a measure of correlation between the responses in each pair determines the edges linking the nodes. This explicit network 
representation allows novel network-theoretic approaches to be applied to the characterization of functional connections within the brain.   
Much recent research in the field of complex networks has focused on methods to identify “community structure”, i.e., cohesive clusters of strongly 
interconnected nodes. The presence of such “communities” within fMRI data may indicate a degree of residual network modularity, a manifestation 
of the coexistence of segregation and integration of brain function. Here, we apply a community structure algorithm based on the maximization of a 
mathematical representation of “modularity” – defined by the density of links relative to that expected by chance – to partition functional 
connectivity (FC) networks from the rat brain under different pharmacological challenges. We examined fully-weighted networks constructed from 
the response to fluoxetine, d-amphetamine and nicotine – three canonical drugs with distinct pharmacological mechanisms. We show that this 
approach can identify sub-networks whose distributions indicate compelling functional subdivisions in the brain. We also discuss the biological 
interpretation of the modularity parameter in terms of segregation and integration of brain function. 
 
Methods: The community structure approach was tested on previously published rat phMRI datasets obtained with 
three different pharmacological challenges: fluoxetine, a selective serotonin reuptake inhibitor (SSRI) [1]; d-
amphetamine, a dopamine releaser/reuptake inhibitor [1], and the nicotinic acetylcholine receptor agonist nicotine [2]. 
The rat brain was anatomically parcellated into Nregion=48 brain regions using a co-registered anatomical atlas [3]. These 
brain regions represent the nodes in the functional connectivity networks. PhMRI time courses were extracted from 
each brain region in each subject, and the post-injection response amplitude quantified, yielding a Nregion×Nsubject 
response matrix for each study. Computing the cross-correlation yielded a symmetric Nregion×Nregion matrix representing 
the strength of the correlation between each pair of nodes.  These values were then normalized by Fisher’s r-to-z 
transformation, the absolute value taken, and the diagonal set to zeros (no self-connections). This resulted in a positive-
definite adjacency matrix containing the edge weights and defining a complete, weighted network. Partitioning was 
performed using a community structure algorithm that seeks to maximize the modularity (Q) [4], implemented in IDL. 
For a certain partition of the network, Q measures the difference between the weights of the edges connecting nodes 
within communities relative to those in a randomly connected network with the same partition. The partition of the 
network that maximizes Q identifies the optimal number and distribution of communities. The higher the value of Q, 
the stronger the community structure, i.e., the more modular the network. The maximum modularity value and the 
resulting partition obtained for each network was compared to a null-model derived from a random network of identical 
size and distribution of links, and with the partition of the corresponding vehicle group.  

 
Results: In all three cases the maximum modularity algorithm identified drug-
specific, symmetrical community structures corresponding to brain regions and 
neurotransmitter systems targeted by the pharmacological challenge. By way of 
example, in the case of d-amphetamine, a drug that stimulates the dopamine 
system, three communities were identified (Fig. 2). One community (red) 
included the ventral tegmental area and nucleus accumbens, key structures in the 
mesolimbic dopamine system. The other two communities included 
ventromedial and dorsolateral thalamus, amygdala and septum (green), and the 
Striatum and most cortical structures (blue), respectively. The maximum 
modularity value was about three times larger than for the vehicle group. 
Partition of functional connectivity networks for the other two drugs (fluoxetine 
and nicotine, not shown due to space limitations) resulted in three and two 
communities respectively, with substantially different distributions. For example, 
connections of the Raphe Nuclei (the source of serotonergic projections to the 
amygdala and to the forebrain) were captured within the same community in the 
fluoxetine group, consistent with its mechanism of serotonin reuptake inhibition.  
 
 
 

Conclusion: The community structure algorithm identified functionally specific partitions of the fully-weighted FC networks derived from the 
response to three different pharmacological challenges. This represents a conceptually different approach to seeking structure in the patterns of 
functional connectivity. Such network-based methods identify clusters on the basis of topological features of the FC network, namely the density of 
links within vs. between communities. Importantly, we retained the full edge weight information within the networks rather than reducing them to a 
binary approximation [5]. Further characterisation of null models for networks derived from functional imaging data will help identify core brain 
structures within each community. The “communities” identified here can be readily interpreted in biological terms as a signature of functional 
segregation within the integrated network of brain activity. Most importantly, the maximum modularity value represents a measure of residual 
functional segregation, and may provide the basis for an operational definition of this. 
 
References: [1] Schwarz AJ et al. (2007) NeuroImage 34 1627 [2] Gozzi A et al. (2006) Neuropsychopharmacology 31 1690 [3] Schwarz AJ et al. (2006) 
NeuroImage 32 538 [4] Newman MEJ (2006) PNAS 103 8577. [5] Schwarz AJ et al. (2007) arXiv:q-bio.NC/0701041v2. 

Fig. 2: Community structure of the functional connectivity network 
elicited by d-amphetamine challenge. Three communities were identified, 
shown in red, blue and green. The red community comprises the 
dopamine mesolimbic system, consistent with the mechanism of action of 
the challenge drug.  

 
Fig. 1: Partition of a fully-weighted  
network by  identifying ‘communities’ of 
nodes with denser connections between 
their constituents than to other nodes 
outside the groups.  
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