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Objective: MRI studies are often based on quantitative image analysis that requires the transformation of different images into a common space. This 
enables, for example, the comparison of the distribution of pathology between groups of subjects or the construction of probabilistic atlases incorporating 
thousands of images [1]. In the context of large MRI studies, calculating the transforms that relate each image to every other image is possible; however, 
the number of such transforms makes it prohibitive. We therefore propose an efficient strategy that relies on the computation of a single transform per 
image relating it to the previous image of the same individual or to an anatomical atlas. Individual transforms could then be mathematically concatenated 
to relate any pair of images. We show that this approach is valid when relating images from an individual subject acquired at multiple time-points.  
Methods: Experiments were performed on a longitudinal dataset of 10 multiple sclerosis patients (37±10.0 years old at the time of the first scan) with 9 
serial (6±4.1 months between scans; 4.0±0.98 years between first and last intra-patient time points) dual-spin echo 1.5 T MRI scans (TR 3000 ms, TE 
30ms/80ms, field of view 24 cm, acquisition matrix 256x192, 3mm slice thickness). Intra-subject registrations were performed on the PD images and 
transforms (T) linking multiple time points together were concatenated. The images from time point 9 (I9) through time point 2 (I2) were registered to the 
preceding time points (step-wise consecutive, e.g. T54) using the FMRIB 
Linear Image Registration Tool (FLIRT, FMRIB Oxford, UK) [2]. For each 
time point from I9 to I3, the step-wise consecutive transformation matrices 
linking all previous time points to the baseline were concatenated (e.g. T9-

1). In addition, I9 through I3 were also directly registered to the baseline 
(e.g. T91), providing the comparison transforms for evaluating the 
concatenated transforms. For each subject, images for time points I9 
through I2 and the transformed images were intensity normalized [3] after 
skull-stripping to the baseline in order to facilitate the registration 
evaluation with Pearson correlation (r), an intensity-based metric. 
Registration quality was assessed by calculating the correlation between 
each image pair within the skull-stripped target image. Automated tissue 
classification was also performed [4] yielding volumetric information. 
Brain parenchymal fraction (BPF), the ratio of brain tissue volume 
normalized to the ICC, was used to assess the extent of tissue loss over 
time and its impact on the quality of the co-registrations. Student�s t-test 
was used to compare the Pearson correlation coefficients between 
images resampled with the direct (e.g. IT91) and concatenated transforms 
(e.g. IT9-1). Changes in BPF over time and changes in WMH volumes 
were assessed.  
Results: The direct (r91,1) and concatenated (r9-1,1) correlation coefficients 
were not significantly different (p=0.84), with a mean correlation coefficient between the IT91 
and the IT9-1 images of 0.99 (±0.012). In Figure 1, we present images from a single subject 
showing slices from the IT91 image, that is a result of registering I9 to I1 directly, for comparison 
with the IT9-1 image, that is obtained by applying the T9-1 concatenated transform to I9. The 
subtraction image of IT91 and IT9-1 shows minimal difference. The correlation coefficients for 
individual subjects are presented in Table 1.  
All intra-subject step-wise consecutive registrations were successful, yielding a mean 
correlation coefficient of 0.81 (± 0.075; range: 0.41-0.90) across the 10 subjects. Time point 3 
of subject 10 had a significant signal inhomogeneity artifact that adversely affected the 
correlation coefficients of the T32 and T43 step-wise consecutive transformations (r32,2: 0.45, r43,3: 
0.42) and the T41 direct transformation (r31,1: 0.40). However, registration quality did not appear 
to be affected as evident from visual inspection and the correlation coefficients of the 
concatenated transforms that included time point 3 (e.g. r4-1,1: 0.74, r5-1,1: 0.76).  
In order to assess the contribution of potential confounding variables to the registration quality, 
the correlations between the direct and concatenated correlation coefficients and the following variables were evaluated: absolute change in BPF, 
absolute change in ICC volume, absolute change in WMH volume, and time elapsed between time points. Differences in BPF showed significant inverse 
correlation with the correspondence of the resampled images (direct: r= -0.28, p=0.021; concatenated: r= -0.29, p=0.013). The other variables had no 
significant effect on registration quality.  
Discussion: The results illustrate that the images realigned via the direct and indirect methods are essentially equivalent even in the context of atrophic 
and other disease-related structural changes, demonstrating the validity of the proposed approach. The applicability of this strategy is especially relevant 
in the context of voxel-based morphometry analyses such as relating lesion distribution patterns to functional deficits (e.g. gait or cognitive performance) 
or disease biomarkers (e.g. genetic markers or known disease risk factors) [5]. The proposed methodology can easily be implemented in image-centric 
databases enabling �real-time� image-based queries generating voxel-wise or region-wise statistical comparisons between subject subgroups stratified 
according to other, non-imaging variables. By appropriate parametrization of spatial distribution, the inverse approach will also be feasible and enable 
unsupervised biomarker discovery strategies seeking linkage between distinct lesion distribution patterns and yet unknown etiologic or pathogenic 
factors. The implementation of the proposed approach in large-scale MRI databases would enable both the automatic spatial analysis of newly acquired 
datasets as well as the efficient on-demand alignment of any pair or group of images. 
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Fig. 1: Visual comparison of concatenated versus direct registration.
Columns from left to right: first time point; direct (IT91) registration;
concatenated (IT9-1) registration; subtraction image of IT9-1 and IT91;
subtraction image of IT9-1 and I1. Changes due to atrophy and disease
activity are apparent between the baseline and time point 9. 
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