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Introduction: Multicontrast MRI has shown promise in identifying and characterizing atherosclerotic plaques [1]. One of the limitations of this technique is the lack of 
a practical automated plaque characterization scheme. The purpose of this study is to develop an automated plaque characterization routine to address this issue. 

Currently, the majority of automated plaque characterization techniques rely solely on signal intensity values in multicontrast MRI data to differentiate plaque 
constituents. Pixel intensities on multicontrast MR images are used either directly (supervised techniques) or indirectly (clustering based techniques) to characterize 
plaque constituents. Despite the use of this approach, there are several issues that hinder its ability to perform automated plaque characterization. One issue is that a 
specific tissue’s intensities on MR images are imaging parameter and field strength dependent, which causes either the classifier be trained repetitively (supervised 
techniques) or the comparative contrast table (clustering technique) be generated exclusively for the chosen set of imaging parameters. To resolve this, a Priori 
Information Enhanced Clustering (PIEC) technique using both multicontrast MR and quantitative T2 values is proposed. In PIEC, the high signal to noise ratio (SNR) 
multicontrast MR images are used to classify different tissue groups while low SNR quantitative T2 maps are used to label the segmentation results. Potentially, T2 
maps’ independence from imaging parameters makes PIEC more robust than characterization schemes using multicontrast MRI alone. Moreover, no additional data 
acquisition is needed for PIEC since a rough T2 map can be generated using the proton density-weighted and T2-weighted images already acquired in the multicontrast 
MR dataset. 
 

Background: PIEC is composed of two separate steps: classification and labeling. Classification of the 
multicontrast MR images was performed based on a spatial penalized FCM clustering algorithm. Details about 
the implementation and parameter selection of this technique are published previously [2]. The labeling of the 
classification results were achieved based on a Bayesian formulation (Eq. 1).  

In Equation 1, the left hand side is the posterior probability defined as the possibility of a specific tissue belongs to type Cj under the condition that its T2 value 
equals T. The numerator of the right hand side is the multiplication of the conditional probability (probability of T2 value being T given tissue type is Cj) and the prior 
probability (probability of tissue’ type being Cj). In our application, the conditional probabilities (T2 distributions of each plaque constituents) are measured using a 
subset of vessel samples. The prior probabilities can be assumed to be equal for all the constituents initially, meaning all tissues have equal probability of presence in 
plaques. After calculating the first slice, the prior probability of the adjacent slice can be updated to be the posterior probability of the previous slice to increase the 
calculation accuracy. Based on this Bayesian model, the detailed scheme of our proposed plaque labeling is as follows: First, calculate a quantitative T2 map using 
proton density and T2-weighted images. Second, compute the posterior tissue probabilities of being among all the tissue types, employing Eq. 1 for each pixel. Third, 
determine the overall posterior probability for each segmented class (of the classified results) by summing up the posterior probabilities of all the pixels belonging to 
this region. Each segmented region can then be labeled using the tissue type with maximum posterior probability. 
 

Methods: To evaluate the performance of the algorithm, PIEC were applied to both simulated and ex-vivo multicontrast MR images of coronary vessel samples. The 
simulated multicontrast MR data was calculated based on a known computational phantom. Ex-vivo Coronary multicontrast MR images were acquired on fifteen 
explanted coronary arteries containing atherosclerotic plaques. The MR scans were conducted on a 4.7T small animal MR scanner (INOVA, Varian, Inc., USA) using a 
37-mm-diameter 16-element birdcage quadrature coil at 37±2°C. Proton density-weighted (TR/TE = 3.5second/15ms), T2-weighted (TR/TE = 3.5second/50-60ms) and 
T1-weighted spin echo (TR/TE = 0.9-1.4second/15ms) images were obtained for the multicontrast MR dataset. In addition, two partial T2-weighted spin echo images 
with TR = 3.5s and TE = 30~50ms were acquired for quantitative T2 distribution measurement. Seven of the fifteen vessels were randomly selected to measure plaque 
tissues’ T2 distributions needed in Eq. 1.The performance of PIEC was assessed by comparing: 1.Characterization results of the simulated data with the computational 
phantom on pixel by pixel basis and 2.Characterization results of coronary scans with corresponding histological stains. Note that only labeling accuracy was evaluated 
since the classification accuracy was accessed by previous research [2]. 
 

Results: Two sets of multicontrast MRI data (T1, T2 and proton density-weighted) were simulated based different imaging parameters. Characterization sensitivity, 
specificity and true positive rate for the two situations are summarized in Table 1. Overall, the The performances of PIEC on the two simulated dataset are comparable 
and both demonstrate excellent characterization accuracy. These results suggest that PIEC is independent of imaging parameters. For the simulated datasets, excellent 
specificity(81.2%-99.8%), sensitivity(97.4%-99.9%) and true positive rate(93.5%-99.8%) were achieved. The comparatively lower accuracy for fibrocellular and media 
tissues is caused by the low contrast between them since their compositions are similar. 

After evaluation of the proposed PIEC characterization on simulated multicontrast MR data, we applied the technique to the multicontrast MR images of excised 
coronary atherosclerotic plaques. A typical plaque characterization result is shown in Figure 1. Visually, the PIEC result identifies various plaque tissues consistent with 
histological stains. For all the multicontrast MRI data we acquired, the PIEC characterization results correlate well with the histological stains. The true positive rate of 
labeling for each of the six tissue categories (fibrocellular, media, necrotic tissue, adipose fat and M199 solution) is summarized in Table 2. The true positive rate ranged 
from 69.3% (media/loose matrix) to 100% (M199 culture media). 
 

Discussion and Conclusions: In the current study, we employ plaque tissues’ quantitative T2 distributions to label classification results based on a Bayesian approach. 
It should be noted that the Bayesian labeling can be easily generalized to use more MR properties by replacing the 1-dimensional T2 distribution to multivariate 
distribution (containing T2, PD, T1…) in the Bayesian formulation (Equation 1). 

In conclusion, we developed a Prior Information Enhanced Clustering (PIEC) plaque characterization scheme that relies on the information from both 
multicontrast MRI and quantitative MR properties. The evaluations on simulated and ex vivo 
multicontrast MRI data demonstrate that PIEC is robust and accurate thus is a very promising 
candidate for automated plaque characterization. 
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