

Apparent diffusion coefficient value for Differentiating Tumors in Uterine Cervix at 3 Tesla

G. Lin^{1,2}, K. Ng¹, J. Wang³, Y. Wai¹, and T. Chang⁴

¹Department of Diagnostic Radiology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan,

²Molecular Imaging Center, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan, ³Medical Physics and Imaging Sciences, ChangGung University, Taoyuan County, Taiwan, ⁴Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan

BACKGROUND Apparent diffusion coefficient value for detection of cervical cancer has been reported in 1.5T MRI. We design this study to investigate the feasibility of using diffusion-weighted image (DWI) in 3T MRI for differentiating cervical cancers and normal uterine cervix.

MATERIALS AND METHODS Sixty consecutive patients with biopsy proven cervical cancers were examined using a diffusion-weighted echo-planar sequence in 3T MRI. The imaging parameters are TR/TE = 3390 ms/79 ms, field of view 350 mm x 320 mm, slice thickness 5 mm, acceleration factor 2, using b factors of 200, 600, and 1000 sec/mm². The DWI and T2-weighted images were co-registered for detailed anatomical localization. The ADC values of cervical cancers were compared with that of pathology proven normal cervical tissue from 30 control subjects. Student's t test was used to compare the mean ADC, and a P value ≤ 0.05 was determined to be statistically significant.

RESULTS Diffusion imaging in the Uterine Cervix is feasible with satisfactory image qualities and without major artifacts noticed. Fig. 1 showed the ADC image (in color) co-registered with the T2W image (in grayscale). The DWI showed improved contrast and sensitivity between the tumor and the normal tissue in $b=1000$ sec/mm², when compared with that in $b=600$ sec/mm² or 200 sec/mm² in all subjects with cervical cancers. The ADC values were significantly lower for tumor ($81.53 \pm 17.65 \times 10^{-5}$ mm²/s) than that for the normal cervical tissue ($119.67 \pm 10.85 \times 10^{-5}$ mm²/s, $p<0.001$), as shown in Fig 2.

CONCLUSION DWI of the uterine cervix at 3.0T is feasible, using an acceleration factor of 2, co-registered with T2W image for anatomy reference, proved to be diagnostically important. The ADC values were significantly lower for cervical cancers compared to that of the normal tissue. Using a high b value ($b=1000$ sec/mm²), tumor was magnified with satisfactory normal tissue suppression.

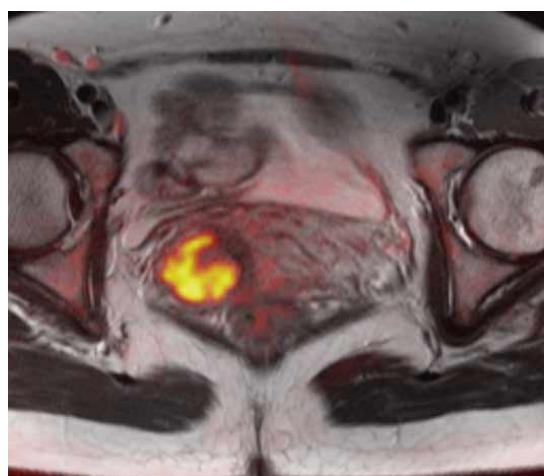


Fig 1 the ADC image (in color) co-registered with the T2W image (in grayscale)

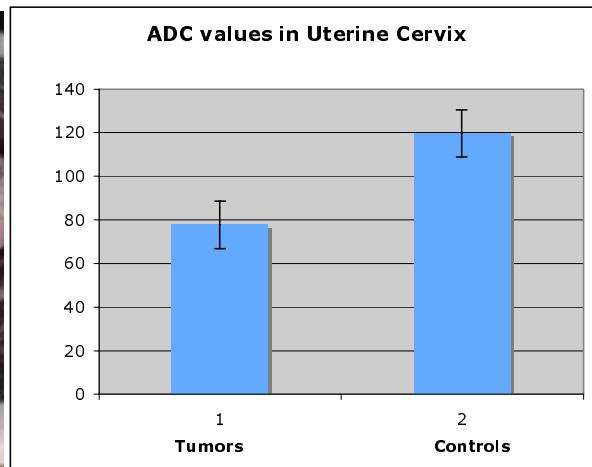


Fig 2: The ADC values in Tumour and Normal controls