
Fig 1 

A fast  Principal Direction Imaging method from Diffusion Weighted Images 
 

P. G. Batchelor1,2, D. Atkinson2, T. Schaeffter3, and R. Razavi3 
1Imaging Sciences, KCL, London, London, United Kingdom, 2CMIC, UCL, London, United Kingdom, 3Imaging Sciences, KCL, London, United Kingdom 

 
Introduction 
Diffusion tensor imaging requires at least 6 gradient directions. From the tensor, we can compute diverse quantities, such as FA, MD, principal direction PD, and non-
principal directions. Fibre tracking can be performed from the principal direction information. A method for PD imaging has been proposed in 2002 (1) using diffusion 
tensor tomography. This, however, requires iterative methods, and measurements with non-stationary gradients. Here we suggest a method to short-cut the acquisition 
of principal directions for applications where we are mostly interested in the PD. As this has 2 parameters, (azimuth and elevation), plus a 3rd parameter for the 
diffusivity, it would appear that 3 gradient directions would be enough. In order to remove some sign ambiguities, we use a 4th direction. We investigate how good the 
PD estimation is in different conditions. The method investigated here uses the measurements as standard DT-MRI, except that fewer gradients are necessary, thus 
reducing overall scan time. 
Method 
The standard model for Stejskal-Tanner diffusion represents the diffusion weighted images as s0 exp(-b gtDg) where g is the corresponding direction of the diffusion 
gradient. D is assumed to be a 6 parameter diffusion tensor, with parameters [Dxx,Dyy,Dzz,Dxy,Dxz,Dyz]. These parameters are not very geometric, and another 
parametrisation is via eigenvalue-eigenvectors: this more unusual way to write the tensors amounts to writing D = λ1 e1e1

t + λ2 e2e2
t + λ3e3e3

t, where ei is eigenvector, λi 

eigenvalue. Good tensors for tracking are the ones where lambda1 is much bigger than λ2, and λ3, an extreme would be λ2=λ3=0. Thus, when we make the admittedly 
extreme assumption that tensors represent a single direction, we replace the model above by the new model D = λeet. In other words, we interpret the log of the 
diffusion weighted images as being the squares of the components of the PD. -log(si/s0)/b = λ(gt

ie)2. 
Of course, this is a crude model, and fitting this to the data leads to one difficulty, as can be seen by assuming that the gradient directions are the x-y,z axes. We then 
have an estimate of the squared components  x2, y2, z2 of the principal direction. There are up to overall plus-minus signs 4 possible solutions: [x,y,z],[-x,y,z],[x,-
y,z],[x,y,-z]. To discriminate between them, we use a 4th direction and compare the values from the fitted model with it, and pick the choice of sign which fits best. 
Clearly, if the input tensor is not perfectly needle-like, i.e all eigenvalues are non-zero, this estimate of the direction will be incorrect. In the Results section, we 
investigate the error of such estimates. 

 
Results 
Figure 1 shows the error as function of changing anisotropy, and tensor direction, for a tensor 
of the form diag([10,a,a]) where a varies from 0 to slightly less than 10 (at exactly 10 
obviously, the principal direction is not defined anymore), thus varying FA from 1 to 0, and 
where the tensor direction is rotated in the xy-plane from 0 to 90 degrees. The error (vertical 
axis)  is  acos(ete0)/π where e0 is the true tensor eigenvector for the largest eigenvalue, and e is 
the PD estimated using our method. We also used an in vivo tensor image to construct a 
simulation as follows. We create pseudo-DWI images by resampling the tensor on the 3+1 
gradient directions mentioned above, and compute the PDs from this. Figure 2a shows the 
correct eigenvector, coded on following usual conventions. Figure 2b shows the estimated 
PDs, while in Fig 2c we shows the PDs after noise was added to the pseudo-DWIs.These have 
a mean of 0.42, and the noise was randomly distributed with mean 0,  
std 0.1. 
Discussion: Our method does not require any modification to standard diffusion imaging, 
except a reduction of the number of required gradient directions. From the data shown here, 
the method seems robust, and it would allow to perform fibre tracking. Potential applications 
would be to cardiac diffusion, where specific interest is in the fibre architecture, where  
anisotropy would be traded for any possible speed-up. Unlike HARDI our model is used to 
reduce the number of directions acquired, however it has in common the assumption thatthe 

response function is needle-like.. The gradients direction used here were chosen just for convenience, it may be that to get maximum gradient strength a better choice 
would be parallel to [1 1 1], [1 1 -1], [1 -1 1], [-1 1 1].  
Ref: [1] Panin et al Physics in Med. And Biol 47 (2002) 2737-2757. 
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