
m Small Ring Large Ring Small Ring Large Ring
0.5 1 0 24.1 10.2
1 3 2 27.6 25.2

1.5 3 4 34.1 -26.7
2 1 1 29.4 -5.5

2.5 1 0 -12.9 451.9

m
Checkerboard 1 
(Low Resolution)

Checkerboard 1 
(High Resolution)

Checkerboard 1 
(Low Resolution)

Checkerboard 1 
(High Resolution)

0.5 1 0 3.9 -9.3
1 4 4 14.2 6.8

1.5 1 2 13.4 19.8
2 2 1 29.5 267.2

2.5 1 0 147.2 1260.9

Number of Scans Within Range     (Out 
of 8)

%∆CMRO2 for scan with highest 
detectability (avg. of two subjects)

Number of Scans Within Range     (Out 
of 6)

%∆CMRO2 for scan with highest 
detectability (avg. of two subjects)

Table 1:  For ring and checkerboard stimuli, ROC slope (m) of 1 yields CMRO2 estimates within
range more frequently than other slopes.  Furthermore, for scans with highest detectability, the
%∆CMRO2 (averaged between subjects for each stimulus) are within range for all stimuli at the
ROC �knee.� 

KNEE

(A) 
 

(B) (C) 

Fig. 1:  A. 3 datasets for flashing checkerboard stimulus exhibit various areas under ROC curves.  B. Dataset with highest
area under curve (red) yields %∆CMRO2 estimates within expected range (yellow band) while datasets with poor
detectability (blue and green) yield unreasonable estimates.  C. %∆CMRO2 at various ROC slopes for dataset with highest
detectability demonstrate that significance level at the �knee� yields estimate within expected range (yellow band). 
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INTRODUCTION Longitudinal rehabilitation studies require fMRI measures and analysis techniques that provide consistency between scanning sessions.  Cerebral 
blood flow (CBF) measurement and cerebral metabolic rate of oxygen (CMRO2) estimation are considered to be more specific imaging markers of neuronal activity 
than blood-oxygenation level dependent (BOLD) contrast and more consistent between subjects and scanning sessions [1-3].  The vast majority of studies employing 
these metrics utilize animals or the healthy human population using several acquisition approaches which include optimized CBF acquisition in conjunction with either 
optimized BOLD contrast or �sub-optimal BOLD,� the latter of which is a byproduct of CBF acquisition.  As we prepare to expand CBF and CMRO2 imaging to the 
rehabilitation patient population, we are exploring the reliability of sub-optimal BOLD/CBF to estimate CMRO2 over the duration of rehabilitation.  This work strives to 
quantitatively evaluate sub-optimal BOLD scans using receiver operator characteristics (ROC) analysis and demonstrates its ability to optimize CMRO2 estimation.  
Specifically, we hypothesize that a) utilization of sub-optimal BOLD datasets with the highest ROC detectability will most consistently yield reasonable CMRO2 

estimates and b) selection of significance threshold at the �knee� of the ROC curve to determine region of interest (ROI) will optimize CMRO2 estimation. 
 

METHODS 
Subjects and Image Acquisition:  We conducted a multi-session monocular study for 2 subjects with retinitis pigmentosa (RP) acquiring optimal BOLD on one day and 
CBF/sub-optimal BOLD on a second day using a 3T Siemens scanner.  For optimal BOLD, subjects were scanned using a block design (alternating 16 second blocks of 
rest and stimulation) with four types of stimuli (2 rings and 2 checkerboards at varied eccentricities and resolutions, respectively) presented to each subject�s left eye 
(20/90 and 20/110 spatial acuity and 10 degrees radial visual field eccentricity).  A single-shot gradient-echo EPI sequence was used to acquire T2*-weighted images 
over 33 oblique axial slices with TR/TE of 2000/30 ms, matrix of 64x64, FOV 22x22 and slice thickness of 3mm with no gap.  Each scanning session consisted of 3 
and 4 scans with checkerboard and ring stimulation, respectively.  CBF/sub-optimal BOLD data were also acquired using a block design (48 seconds fixation followed 
by 48 seconds stimulus) with the same 4 types of stimuli.   Sixteen axial slices (6mm-thick, 1.5mm gap) were acquired using a continuous arterial spin labeling (CASL) 
sequence with parameters of TR = 3s (effective TR = 6s), labeling duration = 1.4s, post-labeling delay = .7s, TE = 19ms, FOV = 20cm, matrix = 64X64, flip angle = 90o 
and acquisition = 112 and 144 volumes for ring and checkerboard scans, respectively [4].   
Prior to statistical analysis, subtraction of control minus labeled images yields perfusion 
contrast and addition of control plus labeled images yields BOLD contrast.  However, the 
relatively short TE required for optimized CBF contrast results in sub-optimal BOLD 
contrast.  Assuming a range of BOLD calibration parameters, CMRO2 was then 
estimated using the common simplified model [5].  All BOLD (optimal and sub-optimal) 
data were corrected for motion, slice scan time and linear drift removal and all CBF data 
were corrected for motion and slice scan time, as well as being smoothed with a 6 mm 
kernel. 
ROC Analysis:  True positives were first estimated by analyzing optimal BOLD data 
using SPM2�s multi-run general linear model (GLM) at a high confidence level (p<.05 
corrected for false discovery rate).  Individual sub-optimal BOLD datasets were then 
analyzed using a GLM and compared to the reference activation map to calculate true 
positive fraction (TPF) and false positive fraction (FPF) at various levels of significance 
for each scan [6].  Detectability, estimated by the integral of the ROC curve, was then 
calculated to measure the performance of the procedure for each fMRI scan and stimulus.  
Subsequently, CMRO2 estimates for each sub-optimal BOLD dataset were related to a) 
detectability and b) the ROC slope at various significance levels (which determine ROI 
used for estimation).  Generally, the �knee� (ROC curve slope=1) yields the best balance 
between TPF and FPF. 
 

RESULTS AND DISCUSSION  We first determined a reasonable range of %∆CMRO2 (between 5 and 30% based on published values for similar stimuli) to evaluate 
CMRO2 estimates [7].  Next, considering a range of points along the ROC curves we found that the highest proportion of datasets yielded CMRO2 estimates within the 

reasonable range at the ROC �knee� (Table 1). For each subject and 
stimulus the dataset with the highest detectability yielded CMRO2 
estimates within range for all stimuli at the �knee� while estimates using 
other ROC significance levels were less commonly within range.  
Furthermore, estimates produced using the �knee� exhibited slightly 
higher %∆CMRO2 for the small ring and low resolution checkerboard 
relative to the large ring and high resolution checkerboard, respectively, 
which is consistent with the limited spatial acuities and eccentricities of 
the subjects.  Commonly, ROC curves for a given subject and stimulus 
showed various detectabilities, the highest of which yielded the most 
reasonable CMRO2 estimate.  For example, three datasets for the low 
resolution checkerboard demonstrate various ROC performances, the 
highest of which (red curve, Fig 1A) yields CMRO2 estimates within the 
expected range (yellow band) across a range of calibration parameters 
(Fig. 1B).  Furthermore, the dataset with the highest detectability yields 
the most reliable CMRO2 estimate when the �knee� is used relative to 
significance levels at other points along the ROC curve (Fig. 1C). 

 

CONCLUSION  This study demonstrates that ROC analysis can optimize CMRO2 estimation by enabling a) dataset selection based on detectability and b) significance 
threshold selection based on ROC slope.  Optimizing %∆CMRO2 estimates despite sub-optimal BOLD acquisition provides great potential in rehabilitation studies 
beyond the scope of the low vision study presented in this work.  
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