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Introduction: Several recent fMRI studies have demonstrated that more information is contained in multi-voxel response patterns than single voxel [1, 2, 4]. However, 

conventional univariate analysis of fMRI data treats each voxel as a separate entity, totally ignoring the fine-scale patterns information contained in the local regions. 

Further, spatial smoothing standardly used in univariate analysis may obscure fine-scale patterns of weak effects that contain neuroscientifically relevant information. 

Consequently, univariate analysis always fails to detect the fine changes of the activity patterns resulting from stimulus. In the present study, a local multivariate 

distance mapping (LMDM) technique based on Fisher discriminant analysis (FDA) is proposed to distinguish the distinct brain activity patterns. Compared to the 

univariate analysis, LMDM employs Fisher�s linear discriminant function (FLDF) as the statistic to discriminate the local activity patterns evoked by different 

conditions and map brain activation, rather than only relying on the individual voxel or combining the local information with spatial smoothing simply. 

Method: For a voxel v0 in the volume, the joint activity of all voxels within a small neighborhood  N (v0) centering on v0  constitutes a spatial pattern. Thus, the multi-

voxel patterns of the small neighborhood measured in the condition X can be regarded as the data sampling from a multivariate variables X=(X1,..., Xi,�, XK), i=1, 

2,�, K, where i stands for the index of the voxels in N (v0). All measurements across trials and time points under condition X construct a sample set SX. To find where 

in the brain the local activity pattern changes resulting from different experiment conditions are significantly separated, we use FLDF as the statistic to quantify the 

degree of separation between the response patterns X and Y which correspond to conditions X and Y, respectively. Given sample sets SX and SY, FDA projects them 

from K dimensions of space onto the discriminant axis which gives the best separation of the two sets (Fig. 1). FLDF statistic, which indicates distance or separability 

of the two sets on the discriminant axis, is computed as: z = (uX � uY )
T∑-1(uX � uY), where uX and uY are mean vectors of SX and SY, ∑ is the pooled sample covariance 

matrix[1,5]. Computing FLDF for each voxel with its neighborhood, a continuous FLDF map will be obtained. Then, a permutation test is performed to obtain a map of 

P values of the FLDF statistic. fMRI data is resampled 1000 times in such way that the spatial patterns of the data are unaltered, but their temporal sequences are 

randomly permuted. To account for multiple comparisons, the P map from randomization is thresholded to ensure the average FDR will not exceed q = 0.05.

Experiment: Subjects (six normal adults) continually fixated on a central cross while viewing picture of faces or houses (3 face blocks & 3 house blocks). Each block 

lasted for 30s and has 20 pictures. Each picture was presented for 500ms. Baselines (crosshair fixation) lasted ~10 seconds. Whole brain fMRI data were acquired with 

a T2*-weighted gradient echo EPI sequence (slice thickness=4mm, TR =2000ms, FOV=240×240mm, matrix = 64×64).  
Results: After being preprocessed, fMRI data were analyzed using GLM with no smoothing, GLM with Gaussian kernel (GK) of FWHM = 9mm smoothing and 

LMDM with K=27 voxels (v0 and its 26-connexity neighborhood). As expected, all three approaches found the major blobs of brain activity evoking by the experiment 

conditions (face and place regions; [2, 3, 4]) (Fig. 2). It could be observed that univariate GLM analysis with no smoothing roughly localized the activated regions, 

whereas the activation maps showed salt-and-pepper phenomenon seriously (Fig. 2a). Smoothing the data with GK resulted in the clean maps and foci regions of 

activations (Fig. 2b). However, LMDM highlighted more voxels which were extended alongside the region of activations detected by GLM. The outcomes indicate that 

there are many voxels containing the effects related to the experiment conditions in fine-grained structure of the activity patterns (Fig. 2c). The univariate GLM with 

GK smoothing failed to detect these voxels because the fine-scale information was discarded when the data were smoothed. Across the subjects, activation regions 

detected by LMDM were all more extended than that detected by the GLM. But there were some varieties among subjects because at the fine spatial scale of 

millimeters with no spatial smoothing, activity patterns are unique to each individual. How to do multi-subject group averaging at fine scale is still an open issue, and 

will have to be investigated further.  

Conclusion: Results from real fMRI data demonstrated that our LMDM method could dramatically increase the sensitivity of detection of fine-scale brain activity 

patterns which contained subtle information about the experiment conditions and showed distributed structures. 
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Fig. 1: FDA projects 
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Fig. 2: Activation maps for 
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