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Introduction 
It is well known that magnitude Magnetic Resonance (MR) data are Rician distributed1. When the Signal-to-Noise Ratio (SNR) is low the probability density function 
(PDF) for these data behaves like a Rayleigh function. The corresponding mean, <M>, will be an overestimation of the true value, A, and hence if used for the 
calculation of quantitative MR parameters, such as the Apparent Diffusion Coefficient (ADC) or the spin-spin relaxation time, T2, will lead to inaccurate results. In the 
past, several different approaches for the reduction of noise effects in MR images have been proposed1,2,3. This abstract presents a new noise bias correction technique 
that outperforms those presented previously and improves the accuracy of computed parameters such as ADC and T2 by reducing the effects of the rectified noise bias 
(RNB) on the MR signal. It also has the important advantage that it can be used to accurately correct individual pixel values and not just region of interest (ROI) values. 
Theory 
The MR signal on the real and imaginary channels is the sum of the true signal and zero mean Gaussian noise. Since the Fourier Transform (FT) is linear, the FT 
operation does not change the PDF characteristics of the real and imaginary data, (i.e., both remain Gaussian). However, the calculation of pixel magnitudes rectifies the 
noise and transforms the distribution of data points such that the PDF becomes Rician rather than Gaussian1. This change also causes the mean of the PDF to be shifted 
from the true value, A, by an amount that we shall call the rectified noise bias (RNB). An expression A can be 
derived3 (see Eq. 3) by combining the expression for <M2>, the second moment of the Rician distribution (Eq. 1), and 
the variance of the measured pixel magnitudes, σ2

r, as a function of the correction factor3, ξ(θ), and the variance of the 
Gaussian noise, σ2

g (Eq. 2). This equation is exact and can be used to correct the measured signal magnitudes for RNB 
as long as the value of <M> and σg are known. This can be realized in practice if relatively large ROI’s are used but 
with smaller ROI’s, which provide poorer estimates of <M>, imaginary values for A will frequently occur. It is 
completely impractical to use Eq. [3] for single pixels when the SNR is small. This problem can be avoided by using 
the binomial expansion of the square root (Eq. 5) as proposed by Nezamzadeh et al2. Equation [5] is mathematically 
equivalent to Eq. [3] and, given accurate values of σg and <M>, yields exact values for A (see Table 1). 
 Eq. [5] can be interpreted as a linear correction applied to the mean of the PDF. If we 
make the substitution <M> →Mj in the first term, where Mj is an individual pixel value, the 
resulting equation (Eq. 6) gives a linear correction that can be applied to each pixel value 
independently.  Note that the correction is the same as for the mean of the PDF in Eq. [5]. 
This causes all pixel values to be shifted by the same amount. Thus, the shape and the 
variance of the distribution of corrected data, ÃNCC, are the same as for the uncorrected data, 
Mj, however, the mean of the corrected data is now equal to A – i.e. the RNB has been 
removed. With this expression, an ROI can be used to calculate the correction accurately but 
the correction can then be applied to individual pixels. To achieve the maximum precision in the binomial expansion, a convergence criterion was implemented to 
automatically determine the number of terms to be used.  
Results and Conclusions 
To test the effectiveness of the correction scheme 500,000 element real and imaginary vectors were created with a standard deviation of σg = 1. From these the 
magnitude vectors were computed. For low values of SNR (0.0 to 0.5), it is clear that <M> > A (see Table 1). Table 1 also compares estimates of A computed using the 
correction scheme proposed here (ÃNCC) with those of Gudbjartsson and Patz2 (ÃGP) and Koay and Basser3 (ÃKB) for the case where accurate values of <M> and σg are 
used. The ÃNCC and ÃKB values are in good agreement and are very close to the true value, A, while the ÃGP values are less accurate. The number of terms required to 
reach convergence is shown in parentheses in Table 1 for each SNR considered. 
 In order to determine whether the new correction scheme improves the accuracy of diffusion parameters computed from MR image data, Eq. [6] was used to 
correct a simulated bi-exponential diffusion decay. Figure 1 shows the uncorrected (triangles), corrected (stars), theoretical (solid line) and fitted decay data (dashed 
line) plotted using both a semi-log scale (blue) and a linear scale (green). Each data point represents a single pixel value. The value of <M> used to compute the 
correction term in Eq. [6] was calculated for ROI’s ranging from 9 to 225 pixels. The fit parameters obtained using a Levenberg-Marquardt algorithm to fit the 
corrected and uncorrected decay data are given in Table 2. The corrected curve in Figure 1 corresponds to the 9 pixel case. From Figure 1, it can be appreciated that the 
corrected data (stars) are in better agreement with the theoretical curve (solid line) than the uncorrected data. For this example, we were unable to obtain a reliable fit to 
the uncorrected data - since D2 is negative neither fit parameter value is reliable. From these results it can clearly be seen that this new correction scheme effectively 
reduces rectified noise bias and increases the accuracy of diffusion parameters calculated from the MR data – even when the correction is applied to individual pixels. 
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Table 1 

A <M> ÃGP ÃKB ÃNCC (iter) 

0 1.253 1.035 0 0.007 (170) 

0.1 1.256 1.038 0.088 0.070 (170) 

0.2 1.265 1.046 0.193 0.183 (81) 

0.3 1.281 1.059 0.295 0.289 (48) 

0.4 1.302 1.078 0.396 0.391 (32) 

0.5 1.33 1.102 0.497 0.493 (24) 

Table 2  

 Theoretical Uncorrected 9 Pixels 

D1(mm2/s) 2.00E-03 1.90E-03 (2.0)E-03 

D2(mm2/s) 0.80E-03 fail (0.80)E-03 
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