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Figure 1. A) Flattened left hemisphere of visual cortex with activation from all 
blocks in the retinotopic run (circled region exemplifies ‘left’ activation that 
should be on the contralateral hemisphere). B) Activation after discarding the 
“non-center” blocks detected by PEER. C) Horizontal direction data from 
commercial system (blue), stimulus paradigm (black), and PEER (red). D) 
Vertical direction data. The gray bars on C and D highlight “non-center”
conditions for the respective directions.
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INTRODUCTION Point-of-gaze is a common behavioral measure for cognitive studies and can complement fMRI data. 
Unfortunately, MR-compatible eye tracking systems are expensive and their performance can be limited. Once installed, setup and 
calibration for each scanning session also can be time-consuming. To overcome these issues, we recently proposed a statistical 
learning approach to estimate eye fixation directly from fMRI images [1]. The method, PEER (Predictive Eye Estimation Regression), 
uses a calibration run with sequence parameters matching those of the fMRI scans (slice prescription, TR, TE, flip angle, bandwidth, 
etc). Support vector regression (SVR) [2] is used to model each calibration image and its corresponding (known) fixation location. 
The SVR model can then be used to predict point-of-gaze for the session’s fMRI runs. In the experiment reported, the fMRI task was 
designed to have “good” and “bad” blocks of fixation to illustrate the practicality and utility of tracking fixation with PEER. 
Specifically, we demonstrate that i) direction of gaze can be tracked during an fMRI-based retinotopic run, ii) improved retinotopic 
mapping is achieved when fixation information is available, and iii) the method gives comparable results to those by a commercial 
eye-tracking system. 
 

METHODS Imaging: fMRI data were collected on a healthy 27-year-old male volunteer with a 3T Siemens TIM Trio, using 31 axial 
EPI slices (TR/TE = 2000/31 ms, voxel=3.4×3.4×5 mm3). Visual stimuli were back-projected, providing an approximate visual field 
of 20˚ horizontally and 15˚ vertically. Point-of-gaze data were recorded using an infrared-based eye tracking system (Applied Science 
Laboratories, www.a-s-l.com). We performed three runs: 1) calibration, 2) retinotopic, and 3) calibration. The calibration runs both 
lasted 108 s (54 scans), during which the volunteer focused on a fixation symbol that progressed twice through nine calibration 
coordinates on the display, with position updates occurring every 6 s. The retinotopic run consisted of 20 s randomized blocks of a 
flashing wedge stimulus at 4 orientations (left/right/up/down) and 2 fixation symbol states (center/non-center) for a total of 8 
conditions. The run lasted 13 min 20 s (400 scans), and had approximately 5 repetitions of each condition. The wedges were 30˚ in 
polar angle width and reversed black/white contrast at 4 Hz. For “non-center” conditions, the fixation symbol was at the outer radius 
of the wedge (e.g. for the right wedge, the symbol was at the extreme right). Analysis: BrainVoyager (Brain Innovation, the 
Netherlands) was used to segment, inflate and flatten anatomical data. Functional data were preprocessed using BrainVoyager's 
motion correction, scan time correction, linear drift removal, and normalization to Talairach space. General linear model results for the 
wedge orientations were thresholded at p=0.05 (corrected using false discovery rate) and a cluster size of 50 mm2 on the flattened 
cortex. PEER was performed using both calibration runs to form a support vector regression model. All three runs were slice-time 
corrected and aligned to the first scan of the first run with AFNI [3]. The two calibration scans were concatenated and modeled using 
SVMlight [4,5], and fixation was estimated for the retinotopic run and compared with the eye tracking data. 
 

RESULTS Fig. 1 shows A) corrupted activation on the 
flattened left hemisphere from all blocks in the 
retinotopic run; B) the improved pattern after 
discarding the “non-center” blocks detected by PEER; 
C) horizontal point-of-gaze data: eye tracking (blue), 
symbol position (black), and PEER (red) – blue and red 
correlations to black are 0.77 and 0.83, respectively. D) 
vertical data: (correlations 0.97 and 0.91). 
 

DISCUSSION AND CONCLUSION The acquisition 
of PEER calibration images required just over 3.5 min. 
- much less than our usual setup time for the eye 
tracking system, and it is possible to acquire calibration 
runs at any point in the scanning session. As a 
retrospective analysis tool, it can be applied at any 
fMRI site. For comparison, the eye tracking system has 
less variability during fixation than PEER, but PEER was more reliable at distinguishing between “good” and “bad” blocks for the 
horizontal data. Further, improved calibration approaches and model parameters may further enhance PEER’s performance. This work 
demonstrates that PEER can be used for fMRI using different stimuli from the calibration runs. Indeed the TR-by-TR responsiveness 
shows that PEER uses image properties other than hemodynamics. Though rapid eye movements (e.g. saccades) would require much 
faster sampling than our current TR limitation, a great number of fMRI experiments would be enhanced with the addition of fixation 
data. We have demonstrated tremendous potential for this simple and cost-effective fMRI eye tracking technique and anticipate that 
further refinements will improve the temporal resolution and estimation precision. 
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