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Introduction: Angular undersampling decreases imaging time in projection MRI 
while maintaining image quality by oversampling the center of k-space [1]. However, 
large undersampling factors cause streak artifacts. By using a composite image 
reconstructed from nearly fully sampled data. Highly constrained backprojection 
(HYPR) [2] mitigates this problem for time resolved projection imaging in the 
absence of motion and for sparse data sets. For example, HYPR has been shown to 
perform well in time-resolved angiography where the data generally meet these 
conditions [2]. However, HYPR may not perform well in more spatially and 
temporally complex data as in, for example, perfusion data. Griswold et. al. have 
recently presented an iterative HYPR algorithm using the method of conjugate 
gradients to address these concerns. Here we present a novel iterative HYPR (I-
HYPR) algorithm which uses the HYPR-reconstructed image as the composite image 
for the next iteration. This algorithm is mathematically similar to ordered subset 
expectation maximization (OSEM) [4,5] in which the initial guess image is the HYPR 
composite image. 

Theory: In projection MRI with a time series the 
experiment is as follows: we make a series of n 
sinograms (sn) of the same object by taking projections 
at sets of angles φn (note that each φn represents a set 
of angles covering 180°, which in general change with 
n). Our objective is to discover a set of images Jn 
which closely approximate the real images In given by, 
Rφn[In] = sn, where R denotes the radon transform over 
the angles φn . Simple inversion of the equation can be 
achieved by using filtered back projection (FBP), 
however it is well known that severe artifacts result 
when the set of angles, φn, do not meet the Nyquist 
criterion. We use some or all of these sinograms, Sn, to 
create a series of composite sinograms (cn). In general 
we require the composite sinograms to be sufficiently 
sampled to allow reconstruction by conventional 
methods such as FBP. We define the composite 

images, Cn = R-1[cn], where R-1 is the inverse radon transform using a suitable filter. 
The algorithm is outlined for the case of one subset in Fig. 1. Essentially the 
algorithm performs standard HYPR on a subset of the projections, updating the 
composite image for use on the next subset. Once all of the subsets have been done 
the process can be iterated until satisfactory convergence has been reached. Use of 
subsets speeds the convergence considerably as each subsequent subset �sees� what 
the previous subset has done and can build on that information. This increases the 
number of effective iterations without significantly increasing the number of 
computations. 
Simulation: For validation of the proposed algorithm, an extreme example was 
constructed consisting of 2 square objects in which one object disappears completely 
at a single time point (Fig. 2a). I-HYPR was performed on 3 projections of the time 
resolved image. Enlarged and cropped images of the first 5 iterations are given in Fig 
2b. Note that the window and level differs from that in Fig. 2a so as to better visualize 
the residual error. After a single iteration (i.e. standard HYPR reconstruction), a 
substantial amount of residual signal error remains in the reconstructed time frame. 
To evaluate convergence the log mean signal value in an ROI placed in the upper 
object was calculated at each iteration and plotted in Fig. 2c. Note that in real imaging 
applications more than 3 angles will be used allowing the use of subsets for 
accelerating convergence. In the cerebral perfusion maps, the CBF maps were nearly identical for 32 projections and 16 subsets after 4 iterations 
(second to left in Fig. 3). The case of one iteration and one subset (far right, Fig. 3) depicts the performance of standard HYPR for this non-sparse 
data set.  
Discussion: In this simulation a new iterative HYPR algorithm is tested in simulation studies. The algorithm was shown to converge exponentially to 
the correct answer for computer simulated data. Feasibility for quantitative perfusion measures with substantial undersampling was also shown using 
simulations from human perfusion data. More study is needed to determine how applicable this technique is in real imaging setting including 
robustness to noise, motion and off-resonance conditions. 
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C =  R-1[c] 
For n timepoints: 
   for i iterations: 
      for k subsets: 
                c  =  R[ C ] 
                m =  s / c 
                M  =  R-1[ m] 
                C  =  C ×  M 
      end k 
   end i 
   Jn = C 
end n 
 
Figure 1: The iterative 
HYPR algorithm refines the 
composite, C, until it 
becomes the time point  Jn.  

 

Figure 2: The simulated dataset is shown (A) above the
five iterations of the I-HYPR algorithm (B) which have
been enlarged and cropped. The mean of an ROI placed
on the upper object is plotted (C) to show the
convergence.  

Figure 3: Cerebral blood flow maps reconstructed with 
HYPR (far right) and I-HYPR using 32 simulated 
projections. 
 Full 4 i, 16 s 1 i, 16 s 1 i, 1 s 

WM 33 ± 20 36 ± 19 29 ± 9 35 ± 0.5 

GM 58 ± 22 64 ± 22 64 ± 17 42 ± 1 

Table 1: Cerebral blood flow in mL/100g/s in white 
matter (WM) and grey matter (GM). The number of 
iterations performed and subsets used in each case are 
indicated by �i� and �s� respectively. 
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