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Introduction  
The total error in a parallel imaging reconstruction consists of two contributions: the reconstructed noise and the remaining image artifact (due to an imperfect recon-
struction). Regularization is a means of trading these errors against one another. The choice of the regularization parameter is generally reported to be critical and its de-
termination difficult and time consuming. Classical regularization approaches for parallel imaging reconstruction (Tikhonov, L-curve, truncated singular value decom-
position) [1, 2] rely on the determination and exclusion or damping of small eigenvalues; depending on the applied norm, an optimal regularization parameter can be 
found. In this work another approach, involving iterative reconstruction, is analyzed [3]: it minimizes a cost function that relies exclusively on the immediate image 
characteristics of noise and artifact power. Image reconstruction amounts to minimizing a weighted sum of the two. It turns out that, in contrast to the reported difficul-
ties with conventional regularization, the choice of the parameter (the relative weight of the two errors) is in fact uncritical in most relevant situations. The contribution 
of reconstructed noise and remaining image artifact to the final error is studied, as well as its dynamics over the iterations. 

Materials and Methods  
The reconstruction method discussed here relies on both noise covariance ψ and (the diagonal of the) image covariance θ and minimizes the total reconstruction error 
∆tot that is the weighted sum of the reconstructed noise and the remaining image artifact: 

tot noise artifactα∆ = ⋅ ∆ + ∆ ,  0,α >  ( )H
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where E is the encoding matrix , F the reconstruction matrix, T the target spatial response function (the intended product of FE) and A a linear mapping (e.g. with the 
corresponding signal estimates on the diagonal).  This leads to the reconstruction formula ( + denotes the Moore-Penrose pseudoinverse): 
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In this work the two contributions to ∆tot are analyzed for a large range of the weighting parameter αopt and a variety of reconstruction cases. All the reconstructions 
were performed on a cluster of 44 computers, using CG iteration. The original image has 242x242 pixels and was acquired with 8 coils. From this input, MR-data was 
simulated on Cartesian as well as spiral trajectories, noise was added and then reconstructed iteratively over 4000 iterations. To compare reconstructed noise and pure 
image artifact, noise as well as noise-free data were reconstructed along with the actual data, such that the three reconstructions took the same path in CG-space. 
Results 
Most noticeably, the total error is essentially constant for a many orders of magnitude of alphas (all alphas below αopt). The optimal reconstruction is only slightly better 
than the ones at lower alpha; this plateau of almost optimal reconstructions holds for many orders of magnitude. Moreover, the total image error is dominated by noise; 
this noise however might has some structure due to image-unfolding, but this structure does not come from imperfect unfolding. The situation changes for more chal-
lenging reconstruction problems (e.g. by increasing the reduction factor or decreasing the number of coils), where the problem gets ill-conditioned: the αopt-dip is getting 
more pronounced, and thus choice of α more critical. The total error (at αopt) is more and more dominated by the remaining image artifact. For α’s below αopt, the noise 
error shoots up and curbs the final image. Interestingly, an image of comparable error can be obtained for 'sα lower than αoptif the reconstruction is stopped at the right 
number of iterations; this number however is not known a priori.  During the CG-iteration, the noise power steadily increases while the image artifact steadily de-
creases; the relative dynamics decides whether the final error stabilizes or diverges. In challenging cases the noise tends to shoot up more than is won by a more faithful 
reconstruction whereas in simple cases the noise error stays bound since the freedom in noise amplification does not lead to a reduced image artifact. This leads to the 
fact that a decreasing remainder in the CG-algorithm can accompany an increasing total error. Therefore this remainder is a bad measure of the reconstruction quality. 
When reconstructing on non-Cartesian trajectories, it is important to apply a k-space filter [4], in order to prevent noise accumulation in the k-space edges that lead to 
diverging image error [5].  The choice of the image covariance (the ideal image covariance and a pure mask were compared) has only a minor effect on the reconstruc-
tion. 

Conclusion 
In case of reasonably well conditioned reconstruction problems, the choice of the regularization parameter α is non critical and the final error is dominated by noise. 
When the problem gets ill-conditioned, the choice of the correct alpha (or the right number of iterations) is critical and at αopt the total image error is dominated by arti-
fact. However, this case is of moderate practical relevance since the reconstructed image shows a large total error at any rate. Until convergence, the CG algorithm 
needs up to a few hundred iterations; reconstruction times are speeded up considerably by parallel computation. It seems important to note in this context that conver-
gence of the CG algorithm ensures minimization of the weighted error sum but does not necessarily imply that the image artifacts converges to a minimum  
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Fig1 (top left): Reconstructed images for reduction factor 3; 
below the optimal alpha, the reconstruction essentially re-
mains identical wheras for larger alphas the image artifact 
quickly increases. 
Fig2 (bottom left): Reconstructed images for reduction factor 
7; below the optimal alpha, the reconstructed images degrade 
due to increase noise power. For large alphas the image arti-
fact starts to dominate the total image error. 
Fig3 (below): The total image error in function of alpha for 
the reduction factors 3 / 4 / 5 / 6 (from bottom to top). It can 
be seen that for increasing difficulty the dip grows. 
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