## Numerical Simulation of Magnetic Fields and Spin Velocity for Unsaturated Ferrofluid Driven by External Static and Rotating Magnetic Fields

## P. Cantillon-Murphy<sup>1</sup>, E. Adalsteinsson<sup>1,2</sup>, and M. Zahn<sup>3</sup>

<sup>1</sup>Research Laboratory for Electronics, MIT, Cambridge, MA, United States, <sup>2</sup>Harvard-MIT Division of Health Sciences and Technology, MIT, Cambridge, MA, United States, <sup>3</sup>Laboratory for Electromagnetic and Electronic Systems, MIT, Cambridge, MA, United States

## Introduction

Superparamagnetic iron oxide (SPIO) agents are potent MRI contrast agents [1]. Included in this category of contrast agents is ferrofluid, which consists of magnetite (Fe<sub>3</sub>O<sub>4</sub>) nanoparticles in a liquid suspension. Field inhomogeneity experienced by water interacting with one or more magnetite particles is well understood [2] and theoretical predictions for T1 and T2 match experimental results [3]. This work investigates ferrofluids in the non-saturated regime, where the magnetic moment of the ferrofluid is coupled to the local magnetic field by the ferrofluid susceptibility. For ferrofluid in a low-strength DC field, the susceptibility is approximately a constant,  $\chi_0$ . In a rotating magnetic field, the susceptibility is a 3X3 complex tensor expression dependent upon the ferrofluid characteristic time constant,  $\tau$ , the rotating magnetic field frequency,  $\Omega$ , the ferrofluid's DC susceptibility,  $\chi_0$ , and the ferrofluid spin velocity vector,  $\omega = \omega_z \bar{i}_z$  [4], [5]. Numerical simulations of a rotating magnetic field in the {*xy*} plane are employed to demonstrate the effect of these parameters on the magnetic field in water in the macroscopic vicinity of a compartment of ferrofluid. **Methods** 

To investigate the effect of rotating transverse magnetic fields in the presence of unsaturated ferrofluid, *Comsol Multiphysics (Comsol AB*, Stockholm), a FEA solver, was used to simulate the field distribution in two concentric cylinders filled with ferrofluid (center), and water (Fig.1), both assumed infinitely long in z such that the fields in the z and {xy} domains are uncoupled. The decoupling is shown from the solution (Eq. 4) to Shliomis' First Ferromagnetic Relaxation Equation [5] (Eq.1) with zero flow velocity, in terms of complex field amplitudes (Eq.2), in sinusoidal steady state for an unsaturated ferrofluid in the linear regime under rotating magnetic field excitation in the {xy} plane, at electrical frequency,  $\Omega$ . This analysis examines the field solutions for a cross-sectional slice in the {xy} plane, ignoring effects due to the cylinder ends. The complex field amplitudes employed for ferrofluid magnetization vector, **M**, and magnetic field intensity, **H**, are related to their corresponding time domain equivalents by Eq. 2, where  $\overline{i}_x$ ,  $\overline{i}_y$  and  $\overline{i}_z$  are unit vectors along the Cartesian axes. The ferrofluid spin velocity (Eq. 3) is then  $\omega = \omega_z \overline{i}_z$  where its expression follows from the conservation of angular momentum. The \* notation denotes a complex conjugate and  $\zeta$  is the ferrofluid vortex viscosity with units of Pascal-sceonds.  $\partial \mathbf{M}/\partial t - \omega \times \mathbf{M} + (\mathbf{M} - \chi_0 \mathbf{H})/\tau = 0$  ...(1)

$$\begin{pmatrix} M_x \\ M_y \\ M_z \end{pmatrix} = \frac{\chi_0}{\left(1 + j\Omega\tau\right)^2 + \left(\omega_z\tau\right)^2} \begin{pmatrix} 1 + j\Omega\tau & -\omega_z\tau & 0 \\ -\omega_z\tau & 1 + j\Omega\tau & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} H_x \\ H_y \\ H_z \end{pmatrix} \quad \dots (4)$$

The ferrofluid characteristic time constant,  $\tau$ , is dominated by either Néel or Brownian relaxation depending on the particle radius [4]. With careful selection of boundary conditions and an iterative solving approach, *Comsol* provides converged solutions of all relevant electromagnetic fields as well as the ferrofluid spin velocity,  $\omega_z$  with a total computation time of approximately 10 minutes on a desktop PC. **Results** 

The solutions for concentrations of ferrofluid of 2.75% by volume of magnetite in water were found. The magnitude of the transverse magnetic field is plotted in Fig. 1 at time, t=0. The transverse field is normalized with respect to longitudinal magnetic field intensity in the water, H<sub>0</sub>, where B<sub>0</sub> =  $\mu_0 H_0$ . B<sub>0</sub> is 0.5 T, the clockwise rotating magnetic field amplitude is 5% of B<sub>0</sub>, the ferrofluid time constant,  $\tau$ , is 10<sup>8</sup> s (corresponding to an approximate diameter of 5 nm for each particle in the ferrofluid) and  $\Omega \tau = 1$ . The transverse magnetic field is found to vary with position, as shown in the {xy} cross-sectional slice in Fig. 1, but also with ferrofluid spin velocity,  $\omega_z$ . As shown in Fig. 2, the variation of ferrofluid spin velocity,  $\omega_z$ , with respect to  $\Omega \tau$  is a maximum when  $\Omega \tau = 1$  and increases with the ferrofluid time constant,  $\tau$ . Selecting  $\Omega \tau = 1$  maximizes the coupling terms in the solution to Shliomis' Relaxation Equation and, hence, results in the largest spin velocity in the ferrofluid.

## Conclusions

Applying rotating magnetic field excitation in the  $\{xy\}$  plane to an unsaturated ferrofluid results in a non-zero spin velocity for the nanoparticles. The angle deviation of the dipole field maxima away from the direction of the applied transverse rotating field (which is along the *x* axis at t=0) is due to both the ferrofluid time constant,  $\tau$ , which acts to increase this angle deviation away from the rotating field, and the spin velocity,  $\omega_z$ , which acts to decrease the angle deviation and move the dipole maxima into closer alignment with the applied rotating field. **References** 

[1] Bjornerud et al, NMR Biomed, 17, p.465, 2004 [2]. Gillis et al, JMR, 137, 1999, p.402.
[3]. Bulte et al, MRM, 42, 1999, p.379.
[4]. Rosensweig, R., "Ferrohydrodynamics".
[5] Shliomis, M. JETP, 34, p.1291, 1972.
Acknowledgements

*Comsol Inc.*, Burlington, Massachusetts, for their technical support. R. J. Shillman Career Development Award.



Fig. 1. Normalized transverse magnetic field intensity for 2.75% concentration ferrofluid in a 0.5 T  $B_0 \bar{l}_z$  field with 25 mT (5% of  $B_0$ ) rotating magnetic field amplitude in the {xy} plane.  $\Omega \tau = 1$  and  $\tau$  is 10<sup>-8</sup> seconds.



Fig. 2. The value of normalized spin velocity,  $|\omega_z \tau|$ , peaks when the normalized applied rotating field frequency,  $\Omega \tau$ , equals 1. Normalized spin velocity also increases with  $\tau$ , and hence, also with magnetite nanoparticle radius.