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INTRODUCTION 
Wavelet-based methods for contrast detection and denoising of functional magnetic resonance imaging (fMRI) data have gained popularity [1,2,3].   The 
primary motivation for using wavelets is that a wavelet basis can sparsely represent a wide class of signals.  Although detailed analyses of wavelet-
based methods for fMRI have been performed [1,2,3], little attention has been given to the selection of a suitable wavelet basis. The sparsity of a 
wavelet representation of a signal depends on both the wavelet basis (determined by the mother wavelet, the number of decomposition levels, and the 
choice of using a dyadic or an overcomplete expansion) and the exact form of the signal.  Activation in an fMRI dataset is inherently sparse, with some 
activation regions being large (e.g. primary cortex) and others being small (e.g. hippocampus). Suitable selection of a wavelet basis for fMRI data must 
incorporate this sparsity. This principle is demonstrated for wavelet denoising of fMRI data in the hippocampus. 
WAVELET BASIS SELECTION CRITERIA FOR FMRI DATA 
Let s denote an fMRI dataset that has been processed to remove the mean of each time course, leaving only 
functional data corrupted by (approximately) Gaussian noise [1].  Furthermore, assume that s has M features (true 
areas of activation) that can each be described by an R-order polynomial.  Denote by FSm,d(s) the size (in pixels) of 
the mth feature of s in dimension 1 ≤ d ≤ D, where D is the number of spatial dimensions.  

Consider a J-level dyadic or overcomplete (undecimated) wavelet expansion of s using the length-L scaling and 
wavelet functions ψ and φ, respectively. Let S denote the wavelet-domain signal.  In order for the basis 
corresponding to the wavelet expansion defined by ψ, φ, and J to be preferable over the basis of the sampled data, S 
should be at least as sparse as s. To be conservative, we will assume that during the wavelet expansion no features 
merge.  It can be shown that to ensure S is at least as sparse as s, the dyadic or overcomplete wavelet basis 
inequalities shown to the right must be true for all values of d.  These inequalities describe the maximum filter length 
(L) and maximum number of decomposition levels (J) for a dyadic or overcomplete wavelet expansion. L must also 
be large enough to allow for at least R+1 vanishing moments.  In practice R=0 can often be assumed.  
METHODS 
Rest fMRI data was obtained by acquiring T2*-weighted gradient-echo, echo-planar imaging data (TR/TE = 3000/25.3 ms, 90° flip angle, 64x64 matrix, 
26 slices, 130 volumes) on a 3T whole-body MR scanner (GE Healthcare) while a healthy subject fixated on a white cross for the entire acquisition.  
Twenty-five rest datasets were created by resampling these acquired data using the wavestrapping 
resampling technique [4].  Synthetic block (30 sec active/rest) activation was added in a single 4x4 
region near the right hippocampus with 0.5% contrast. The mean of each time course was removed 
from the resulting dataset.  Each image was then denoised using three different wavelets (Haar, 
length-4 Daubechies, and Battle-Lemarie degree-1 spline) and a soft threshold. The size of activation 
dictates that an overcomplete wavelet expansion be used with a single decomposition level and a 
maximum filter length of 2.33. A receiver operating characteristic (ROC) curve was computed from 
each denoised dataset.  

Functional MRI (TR/TE=2500/25.3 ms, 90° flip angle, 64x64 matrix, 26 slices, 110 volumes) was 
performed for pre-surgical planning on a subject with a right hemispheric arteriovenous malformation. 
The clinical question is whether function (activation) in the left hippocampus.  An MR-compatible 
synchronization control system (MRIx Technologies, Bannockburn, IL) was used to present a visual 
block design (25 sec active/rest) memory paradigm to the subject.  The image data was denoised as 
described above using the three different wavelet bases. No other corrections were performed.  
Contrast detection was performed on the original and denoised data using a standard t-test at an 
uncorrected threshold of t=4.75. This threshold was selected to allow activation in the left 
hippocampus to be seen in the original (non-denoised) data.  The activation of the left hippocampus 
was verified using a second functional paradigm based on language comprehension.  
RESULTS 
Fig. 1 shows the average ROC curve after denoising the synthetically activated rest data using each 
wavelet basis.  As expected from the overcomplete wavelet basis inequalities, the Haar basis 
provides the best denoising performance.  The other two wavelet bases perform less well as their 
filter length exceeds the maximum filter length inequality.  

Fig. 2 shows the result of performing contrast detection on the pre-surgical data before and after 
wavelet denoising.  Activation in the left hippocampus is detected in a single voxel of the original data.  
After wavelet denoising this activation can only be detected (at the same threshold of 4.75) if the Haar 
wavelet basis is used for denoising.  Based on the filter length inequalities and the fact that the 
hippocampus is known be small (and is therefore represented by a small number of voxels) this result 
is expected due to the Haar basis having the shortest filter length.  
CONCLUSION 
The inherent sparsity of functional data should be considered when selecting a wavelet basis for processing fMRI data.  Although many wavelet bases 
may be suitable when the primary interest is large features, a limited subset of those bases provides a sparse representation of fMRI data with small 
features. To form the best estimate of small regions of activation using a technique such as wavelet denoising, a wavelet basis with very short filters 
should be used. Although (non-Haar) symmetric wavelets are generally preferred due to their linear phase property, such wavelets are typically longer 
than non-symmetric wavelets with comparable number of vanishing moments and therefore are not applicable for detection of small regions of 
activation. 
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Fig. 1: Average ROC curves after wavelet denoising 
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Fig. 2: Contrast detection results on original and 
wavelet denoised data.  The yellow region of 
interest box indicates the spatial location of the 
small images. 
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