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Introduction  
This paper describes an approach combining multivariate Ganger causality analysis, temporal down-sampling of fMRI time series and graph theory 
to investigate causal brain networks. Multivariate granger causality utilizes the directed transfer function (DTF) which is better suited for modeling 
networks [1] than bivariate granger causal methods [2]. In addition to permitting the investigation of slowly varying processes such as fatigue, the 
coarse temporal scale of analysis removes the effect of the spatial variability of the hemodynamic response as a confounding factor. Finally, graph 
theoretic concepts [3] provide a vehicle for characterizing the resulting network topology for effective interpretation of the results. 
Materials and Methods 
EPI data were acquired from ten healthy volunteers while they performed repetitive right-hand grips at 50% maximal voluntary contraction in a 3T 
Siemens Trio scanner. Each contraction lasted for 3.5 s, followed by a 6.5 s inter-trial interval. The task lasted 20 mins and visual feedback was 
provided to guide the performance. Scan parameters were: TR= 2 s, TE= 30 ms, FA= 90°, voxel size = 3.44×3.44×4 mm3. Activated voxels were 
identified by cross-correlating a reference waveform derived from the activation paradigm. Mean voxel time series from primary motor (M1), SMA, 
primary sensory (S1), pre-motor (PM), cerebellum (C) and parietal (P) areas were detrended. A summary measure time series was derived by 
calculating the area under each epoch, to permit the investigation of epoch-to-epoch variations. The Granger analysis was carried out in three non-
overlapping temporal windows. A multivariate autoregressive model (MVAR) was fit using the summary time series from the six ROIs in each 
window as given below, subsequent to which the non-normalized direct DTF (dDTF) [1] was computed. 

 
  

  
where p is the model order, X(t) =(x1(t),x2(t)... xk(t)) is the data matrix with xk representing an 
ROI summary time series and E(t) is the prediction error. H(f) is the frequency domain 
representation of A-1(i) and ηij is the partial coherence [1] between ROIs i and j. In addition to 
giving the magnitude and direction of the causal influence, dDTF de-emphasizes mediated 
influences [1]. The statistical significance of the influences was ascertained using surrogate 
data technique [1,4] subsequent to which the consensus-inference concept [5] was used to 
find a single group significance threshold for all the subjects. Once the network was 
determined, we used the concepts of clustering coefficient and eccentricity from graph theory [3] to characterize it. Cluster-in (Cin) and cluster-out 
(Cout) coefficients were calculated as the total inflow and outflow (as measured by dDTF) at a particular node, respectively. Cin and Cout indicate 
whether an ROI is predominantly driven or driving. Eccentricity of an ROI is defined as the maximal sum of causal influence of the ROI along the 
path involving maximal causal strength and is indicative of the impact of that particular ROI on network performance [3]. The ROI with maximum 
eccentricity was defined as the major node in each window. 
Results and Discussion 
There was a significant decrease (p<0.002) in hand grip force measured after the task, indicating that fatigue had occurred. The change in connection 
patterns during the task are illustrated in Fig. 1. In the first window, S1 is the major node and, as seen from the Table 1, is the prominent driver while 
M1 is predominantly driven. In the second window, S1 and C are the strong drivers. Also, C is the major node and the cluster coefficients of SMA 
and PM are elevated. The strengthening and paring of connections in the second window are most likely related to a learning effect because in this 
window the dependence on raw tactile feedback was likely decreased and the orchestration of movement timing probably gained importance. Though 
the final window retains a hint of the middle window organization, no significant bidirectional feedback connections are seen (the network is cyclic 
in the first two windows and becomes acyclic in the final window), and the magnitude of the cluster coefficients decreases. This is consistent with the 
disconnectivity effects of fatigue as shown previously [6].                                                
Conclusions 
In this work we have 
demonstrated the utility of 
an integrated approach 
involving multivariate 
Granger causality, coarse 
temporal scale analysis and 
graph theory to investigate 
causal brain networks. Our 
results support the 
hypothesis that muscle 
fatigue leads to 
disconnectivity in the 
cortical network involved.               
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Window M1 SMA PM S1 C P 

Cin 19 15 7 9 16 11 
1 

Cout 8 13 7 25 10 13 
Cin 15 21 15 9 16 8 

2 
Cout 8 14 11 23 18 10 
Cin 11 13 9 9 15 8 

3 
Cout 7 8 9 18 14 9 
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Figure 1 Temporal dynamics of networks. The significant links are represented as solid arrows and the p-value of the 
connections are indicated by the width of the arrows. The major node in each window is also indicated as dark ovals 

Table 1 Clustering coefficients for different ROIs
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