Human Brain-Structure Resolved T2 Relaxation Times of Proton Metabolites at 3 Tesla

W. Zaaraoui^{1,2}, L. Fleysher¹, R. Fleysher¹, S. Liu¹, B. J. Soher³, and O. Gonen¹

¹Radiology, New York University School of Medicine, New York, NY, United States, ²Center RMSB, CNRS-Victor Segalen University of Bordeaux 2, Bordeaux, France, ³Center for Advanced MR Development, Duke University Medical Center, Durham, NC, United States

Introduction

Determination of the transverse T_2 relaxation time is one of the major concerns for absolute metabolite quantification in proton magnetic resonance spectroscopy (¹H-MRS). Only three studies reported T_{2S} of human brain metabolites at 3T(1-3). Since all used large single voxels, 8 to 25 cm³, multiple examinations were needed for different brain regions at considerable gray and white matter (GM, WM) partial volume. Therefore, to obtain the spatial T_2 distribution of *N*-acetylaspartate (NAA), total creatine (Cr) and choline (Cho) over extensive human brain regions, at 3T, with minimal partial volume, we propose to use: (*i*) 3D ¹H-MRS, at (*ii*) 1 cm³ voxel resolution, in a (*iii*) two-point protocol optimized for the least error per given time by adjusting both the echo delay (*TEi*) and number of averages, *Ni*, at each point (4).

Materials and Methods

Eight healthy 26 ± 2 year-old subjects (4 male and 4 female) underwent the hour-long procedure 3D acquisitions: TE_1 =35ms, N_1 =1 and TE_2 =285ms, N_2 =3. Experiments performed in a 3T (Trio, Siemens) used a TR=1s PRESS to excite a $10\times8\times4$ cm³ volume of interest partitioned into 320 voxels of 1 cm³ each within a $16\times16\times4$ cm³ field of view. Proton T_2 relaxation times of NAA, Cr and Cho at 2.02, 3.03 and 3.21 ppm were assessed using T₂= (TE₂-TE₁)/ln(S₁/S₂) where S₁ and S₂ are the metabolite's peak areas at TE₁ and TE₂. The metabolites' T_2 values were averaged within outlines GM: caudate, thalamus, cingulate gyrus; and WM structures: genu and splenium of corpus callosum, parietal, occipital and centrum semiovale, as shown in Fig. 1.

Results

Across all subjects, the NAA and Cr T_{2s} in GM structures, 226±17 and 137±12 ms, were 13 – 17% shorter than the corresponding 264±10 and 155±7 ms in WM. The T_{2s} of Cho were not different, 207±17 and 202±8, in GM or WM. Note the inter-subject similarity within the T_2 distributions of NAA, Cr and Cho from all 320 voxels in each of the 8 subjects shown in Fig. 2.

Discussion and Conclusion

These T_2 values, obtained to our knowledge for the first time at this field, spatial resolution, coverage and precision, are essential for reliable absolute quantification. Within ±10%, these results validate two assumptions commonly made (*i*) that the entire brain or at least WM or GM tissues have the same $T_2(s)$ and (*ii*) that all healthy subjects share the same T_2 value(s).

References 1.Mlynarik V *et al.* NMR Biomed 2001;14(5):325-331./ 2.Traber F *et al.* J Magn Reson Imaging 2004;19(5):537-545./ 3.Barker PB *et al.* Magn Reson Med 2001;45(5):765-769./ 4.Fleysher L *et al.* Magn Reson Med (in press)