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Introduction: In Dynamic Contrast Enhanced MRI (DCE-MRI), semi-quantitative parameters such as the Area Under the Curve (AUC) (1) are commonly used as 

endpoints; quantitative parameters are also generally felt useful such as the contrast agent (CA) transfer rate Ktrans.  Quantitative parameters are obtained by modeling 

the CA dynamic data with a kinetic method, for instance the �Tofts model with the blood plasma volume vp term� (2) which was preferred by several recent DCE-MRI 

consensus recommendations.  This model describes the CA concentration vs. time curve Ct(t) as: )()](exp[)()( tCvdtkCkvtC ppeppepet +−−= ∫ τττ   Eq.[1], 

where ve is the extracellular extracellular space (EES) volume, kep
 ≡Ktrans/ve represents the rate constant of CA backflux from the EES to the blood plasma, Cp(t) is the 

arterial input function (AIF).  Traditionally those quantitative parameters are estimated by the least square fitting (LSF) method, which is often time-consuming 

because numerous iterations are needed and the convolution term in those models is computationally expensive.  For AIFs in certain analytical forms, the convolution 

can be done explicitly; for AIFs in general form the Fast Fourier Transform (FFT) algorithm is often used to perform the convolution. 

Materials and Methods:  Because the convolution term in Eq.[1] has an exponential kernel, the following holds: 
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 Eq.[2],  

where dj {j=1,...,D} are the time grids, and f(dj) is defined as the integral over [0, dj].  Starting from j=1, one by one in a sequential order the next integral f(dj) can be 

done quickly using the previously calculated f(dj-1) according to Eq.[2].  With this �fast sequential convolution method� (FSCM), the computational time to calculate 

the convolutions at all the time grids is proportional to D.  In contrast, the computational time of the FFT is much longer - proportional to 2(2D)Log2(2D) because 

zero-padding and two FFT have to be used.  For example the FFT is 40 times slower when D=512.  In Eq. [2] a Euler rule is used for the Cp(τ) term in the numerical 

integral over [dj-1, dj], alternatively higher order approximations such as a trapezoidal rule can be used. 

Here we also present a LACK algorithm which gives a super fast estimation of the quantitative parameters by directly Linking the Area under the Curve 

parameters with the Kinetic parameters.  Pi and Ni respectively denote the AUC of the Cp(t) and Ct(t) at time interval i.  For the Tofts model in Eq.[1], three time 

intervals i=1, 2, 3 are needed � for example we can respectively select them as [0s, 45s], [45s, 90s] post bolus arrival and the last 120s.  Step by step, we calculate kep, 

vp / ve and ve using those AUC parameters.  Denote mi= Ni / N3 and di= P3 Ni / N3 � Pi, there is a relation:  d-PdPkNdkNdkN epepep 0))((�)(�)(�
122131221 =−−   Eq.[3], 

where we use )(�
epi kN to denote the AUC of time interval i for the simulated noise-free Ct(t) at kep ,ve=1 and vP=0.  Based on Eq.[3] we can create a look-up table of 

)(�
epi kN at different kep.  At step 1, we use the look-up table and linear interpolation to estimate kep.  In step 2, using the estimated kep we calculate 

1131 /])(�)(�[/ dmkNkNvv epeppe −= .  In step 3, we calculate )](�)//[( 333 epepe kNPvvNv += .  Finally, we obtain Ktrans ≡ kep
 ve and vp. 

We evaluate the two algorithms using clinical DCE-MRI data acquired from renal cancer patients at 2s resolution for about 7min post injection of 0.1mmol/kg 

Omniscan.  The AIF was obtained with a multiple reference tissue method (3).  The kinetic parameters are estimated with the LACK method, and compared with the 

results obtained by the traditional LSF method where the FSCM is used for the convolution.  The Levenberg-Marquardt approach is used for the minimization in the 

LSF.  The software is written in IDL (RSI) and ran on a PC (Dell, 2.8GHz ). 

Results: Equipped with the FSCM, the speed of the traditional LSF averages 

about 140 voxels/s.  The speed of the LACK is much faster, averaging about 

90,000 voxels/s.  In the representative example shown in Fig. 1, the rectangular 

ROI has about 23,000 voxels, which took less than 0.25 second to compute with 

the LACK.  As shown by the vp maps in Fig. 1, parameter maps obtained by the 

LACK were very similar to those by the LSF, but they are slightly noisier. 

Discussions and Conclusions:  With the help of the FSCM, quantitative 

parameters can be estimated with the traditional LSF at fast speed.  The LACK provides a super fast and robust estimation of quantitative parameters, computing an 

entire slice in sub-second. The LACK further shows that there is a direct connection between the quantitative parameters and the semi-quantitative AUC parameters (1). 
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Figure 1 (a): LACK (b): LSF 
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