
 
Figure 1 : Parameter maps estimated using the AIF described in 
the text, overlaid on morphological images. 
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Introduction For quantitative DCE-MRI to become routine in clinical applications the 
development of efficient software tools are vital.  A component of such software will be a 
methodology for incorporating the arterial input function (AIF) into the analysis, and various 
approaches have been proposed in the literature.  Many groups have used the work of Weinmann 
[1] to justify the use of a simple bi-exponential form for the AIF, which when combined with 
standard leakage models leads to equations that can be fitted to the acquired data using least-
squares estimation methods.  The simplicity of the resulting equations means that parameter 
estimation is typically very rapid.  However, for in vivo data the lack of a bolus term in 
Weinmann�s AIF means that DCE-MRI data obtained following a bolus injection cannot be 
accurately modelled, especially if a significant plasma fraction is present.  In this work we give 
expressions for an alternative to the bi-exponential AIF which incorporates a realistic bolus 
model.  Crucially, this model produces a relatively simple expression for the tissue uptake curves 
so that the fitting process is well-behaved and efficient.  This model has been implemented in 
our in-house software tool, MRIW, and results are presented showing its application to a data set 
from a patient with advanced metastatic liver disease. 
 
 
Theory The AIF is modelled using equation (1), where cb(t) = αb t e-µbt is a gamma-variate 
function describing the initial bolus, and B(t) = αe e-µet is an exponential term describing 
equilibration of the bolus by leakage into the whole-body EES, as described by Weinmann [1].  
Equation (2a) shows the explicit expansion of the convolution in equation (1), giving a direct 
formula for the AIF in terms of the component parameters.  Equation (2b) is essentially the 
same, but common terms have been collected together, and their amplitudes simplified into Ab 
and Ae.  The tissue curve is given by ct(t) = cp(t) ⊗ h(t), where h(t) is the tissue residue function.  
For the Tofts model this is h(t) = Ktrans e-kept, in which case the tissue curve can be calculated 
explicitly, and is given in equation (3).  If a plasma fraction is also present then an additional 
term given by vp times equation (2b) must be added to equation (3).  Typically the bolus arrives 
at the region of interest at some unknown time t0, so the unknown parameters can be estimated 
by fitting the acquired data to the curve ct(t�t0) u(t�t0), where u(t) is a unit step function at t = 0, 
and ct(t) is given by equation (3), with the addition of a plasma fraction if appropriate.  Equation 
(3) is not defined when kep = µb or kep = µe so special cases must be calculated.  If kep = µe then 
the first term in the second parentheses of (3) must be replaced with t e-µet. Similarly if kep = µb 
then the second term in the second parentheses must be replaced with te-µbt,  and the whole of the 
first term must be replaced with Ktrans Ab t

2 e-µbt/2. 
 
 
Methods The acquired data is first transformed to give absolute estimates of the tracer 
concentration using established methods [2].  Then equation (3) is applied pixel-by-pixel to give 
least-squares estimates of the tissue parameters Ktrans, kep, t0 and vp.  The AIF is defined by the 
four parameters, Ab, Ae, µb and µe, and these must be supplied as an input to the software.  We 
are currently working on a more complete approach where these are estimated from the tissue 
data along with the tissue parameters, but for the results presented here they were fixed to Ab = 
310 mmol min-1,  Ae = 1.05 mmol,  µb = 20 min-1 and µe = 0.17 min-1.  These were chosen to 
give a good match to a recently published generalised population AIF [3]. The dynamic part 
of the study consisted of 40 dynamic measurements acquired every 5.6s (with a 5s gap in 
between each measurement) using a 3D VIBE sequence with navigator breath-hold and 
follow (iv. Magnevist® 0.1mmol/kg body weight, TR/TE=4.36/1.34ms, α=24°, 
interpolated matrix size=256×256, number of slices=12, slice thickness=5mm, NSA=1).  
 
 
Results Figures 1 and 2 show parameter maps using this fitting process with data from a patient 
with advanced metastatic liver disease, overlaid onto an image displaying the general 
morphology.  These values are consistent with literature values, and in particular vp is in a plausible range. 
 
 
Conclusions The proposed input function is sufficiently realistic to accurately model data with a non-negligible vp fraction, whilst remaining simple enough for the 
fitting to be computationally efficient.  This efficiency comes from the use of a model that allows all the necessary convolutions to be carried out analytically before 
fitting to the data, removing the need for numerical convolutions. 
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