

Monitoring of Liver Tumor Response to Treatment by MRI

S. K. Hekmatyar¹, C. M. Schmidt², A. Babsky¹, H. Wu², S. Wentz², M. E. Hennig², M. A. Miller¹, J. S. Sebolt-Leopold³, and N. Bansal¹

¹Imaging Science Division, Radiology, Indiana University, Indianapolis, Indiana, United States, ²General Surgery, Indiana University, Indianapolis, Indiana, United States, ³Pfizer, Inc, Ann Arbor, Michigan, United States

Introduction

Non-invasive methods for detecting early response to therapy are critical for developing novel cancer therapy in preclinical experiments. Conventional ¹H MRI provides volumetric measurement of tumors (1) deep inside the body which are not accessible by caliper. ²³Na MRI is sensitive to changes in cellular metabolism and relative extracellular space and, thus providing additional information than that is available from ¹H MRI (2). In this study we applied ¹H and ²³Na MRI to investigate the effects of cancer therapy with a MEK pathway inhibitor in TGF- α transgenic mice that develop spontaneous hepatocellular carcinoma (HCC)(3). We believe that this report represents the first study of monitoring response to therapy in a spontaneous tumor model by ²³Na MRI.

Methods:

Male MT-42 (CD-1) TGF- α transgenic mice with spontaneous HCC were imaged every alternate week before and after treatment. After the tumors reached the desirable volume ($> 500 \mu\text{l}$), treated animals ($n = 5$) received the MEK inhibitor once daily through gavage. Control animals ($n=4$) received an equivalent dose of the carrier solution. MRI experiments were performed on a 9.4 T 31 cm horizontal magnet (Varian Inc, CA) equipped with a 12-cm gradient set capable of up to 38 gauss/cm. All images were obtained with a loop-gap volume resonator (30 mm ID coil and 25 mm in depth) dual tuned to 400 MHz for ¹H and 106 MHz for ²³Na. The mice were anaesthetized with 0.75% isoflurane delivered in medical air at 1 L/minute using a nose mask connected to a gas anesthesia machine. Warm air was blown through magnet bore to help maintaining the animal core temperature. Tumor growth was monitored by ¹H MRI. Proton density-weighted multi-slice 2D spin-echo images with fat suppression were acquired using following parameters: TR/TE 2000/13 ms, matrix size: 256 x 128, zero filled to 512 x 512, FOV 4 x 4 cm, slices 24, thickness =0.5 mm, gap =0.7 mm, 2 signal averaging, and 8 min 39 sec total scan time. The liver slices with only tumor were also acquired with respiratory gating to collect images without motion induced artifacts. Three-dimensional ²³Na MRI were obtained with a gradient-echo imaging sequence and the following imaging parameters: TR/TE 50/4 ms, matrix size 64 x 64 x 16, zero filled to 256 x 256 x 64, FOV 4 x 4 cm 64 signal averaging, and 16 min 21 sec total scan time. Processed data were analyzed with IVA a graphical user interface (INDY PET image processing software) for co-registering multi-slice 2D ¹H and 3D ²³Na MRI and for measuring tumor volume and sodium signal intensity (SI). Statistical analysis was performed using ANOVA.

Results and Discussion:

The time course of relative changes in tumor volume and average tumor ²³Na MRI SI relative to the reference for control and treated liver tumors are illustrated in figure 1. Because of inherent intra-tumor variability in the spontaneous tumor model, relative changes in tumor volume and ²³Na MRI SI, rather than absolute changes are shown. The control group showed a ~23% increase in tumor volume compared to baseline and increased necrosis over the two month study period. The treated animals showed a ~78 % decreases in tumor volume compared to baseline four weeks after initiating therapy with the targeted inhibitor. Tumor ²³Na MRI SI for the control group progressively increased (10-20 %) as the tumor volume increased over two months. On the other hand, the treated group showed a ~30% decrease in tumor ²³Na MRI SI after initiating the therapy (fig 2). The observed increase in tumor ²³Na MRI SI in control group may result from an increase in extracellular space or intracellular $[\text{Na}^+]$. Tumor extracellular space may increase with growth due to inefficient cell packing and leaky blood vessels in fast growing tissue. Intracellular $[\text{Na}^+]$ may increase due to decreased Na^+/K^+ -ATPase activity as a result of decreased perfusion and decreased cellular ATP levels. Increased activity of Na^+/H^+ anti-porter because of increased glycolysis and acid production may also contribute to increased intracellular $[\text{Na}^+]$. Tumor ²³Na MRI SI decreased in the treated group as the result of clearing of dead cells, better perfusion, and improved energetic status. These changes decrease both extracellular space and intracellular $[\text{Na}^+]$ decreasing total tissue sodium.

Conclusion:

In summary, we demonstrated, for the first time, application of ¹H and ²³Na MRI for monitoring response to therapy in a spontaneous tumor model. The data presented show that a novel MEK inhibitor suppresses MEK activity in HCC evidenced by decrease in tumor volume by ~ 78 %. Tumors within the liver were readily identified and their development was monitored before and after therapy using MRI. ¹H and ²³Na MRI provide useful methods for preclinical evaluation of targeted therapy.

References:

1. Therasse P et.al. *J Natl Cancer Inst*, 92, 205 –216 (2000)
2. Goldsmith M et al. *Physiol Chem Phys*, 7, 3-269 (1975)
3. Judith S Sebolt-Leopold, *Oncogene*, 19, 6594-6999 (2000)

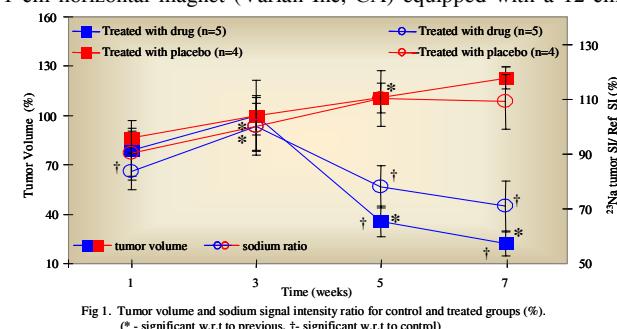


Fig 1. Tumor volume and sodium signal intensity ratio for control and treated groups (%). (* - significant w.r.t previous, † - significant w.r.t to control)

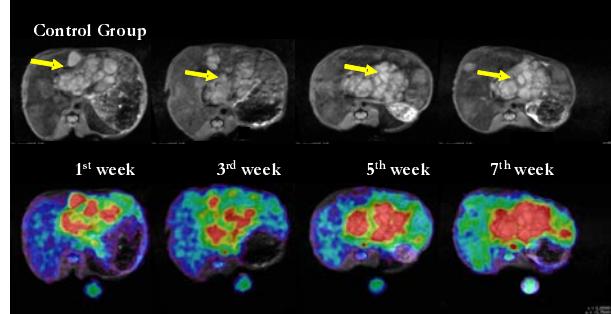


Fig 2(a): ¹H and ²³Na MRI of the control mouse with liver tumor

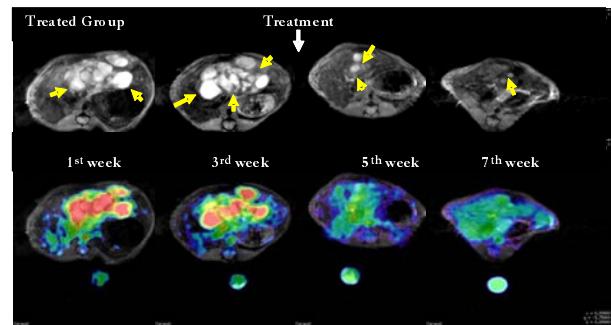


Fig 2(b): ¹H and ²³Na MRI of the treated mouse with liver tumor