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Introduction 

A number of pharmacokinetic models have been formulated to characterise the uptake of contrast agent by tumours in vivo. The most commonly used models 
in this context include modified Kety [1], extended Kety [1], St. Lawrence and Lee [2] and Griebel [3]. The modified Kety model is parametised by Ktrans and ve, 
which are related to blood flow and permeability and to the fractional volume of the 
extracellular extravascular space (EES), respectively. The extended form also includes 
the fractional blood plasma volume, vp. Conversely,  the SLL and Griebel models are 
parametised directly by flow (F), the permeability-surface area product (PS), extraction 
(E), mean transit time (MTT), ve and vp, thereby offering a more transparent relationship 
with tissue physiology. However, it is unclear whether the formulation of these more 
complex models and the inclusion of greater number of fitted parameters is justifiable 
and whether this increased complexity provides a more accurate description of the data. 
As an initial evaluation, an optimised method for fitting pharmacokinetic models is used 
in this study to estimate absolute measures of goodness of fit provided by each of the 
models using in vivo data from tumours. 
Materials and Method 

MRI Measurement: DCE-MRI data were acquired from 10 patients (5 with rectal 
cancer, 5 with prostate cancer) using a dual-echo sliding window (DESW) FLASH 
sequence (TR/TE1/TE2/α = 30ms/5ms/30ms/30º for dynamic T1w images; a 5º flip angle 
was used for reference proton density-weighted images (required for conversion to Gd-
DTPA concentration) [4]), with a body phased-array coil. Images were reconstructed 
with a temporal resolution of 1.1s and total duration 270s; contrast agent (Magnevist, 0.2 
mMol/kg body weight) was injected at 5ml/s. Patients received Buscopan (20mg) before 
scanning to eliminate peristalsis. 

Phamacokinetic Modelling: By using the least squares algorithm to fit 
pharmacokinetic models to signal intensity data (as opposed to Gd-DTPA concentration) 
and performing the conversion between signal intensity and Gd-DTPA concentration 
within the optimisation algorithm, the Gaussian distribution of noise within this type of 
data can be exploited [5]. Using pre-enhancement data to estimate the standard deviation 
of the noise, the χ2 goodness of fit was used to discriminate between good and bad fits, in 
absolute terms. Using this approach, each of the four models was fitted to each pixel 
within a ROI corresponding either to tumour or prostate and the χ2 statistic was calculated for each. All of the models require an estimate of the blood plasma 
concentration, for which a bi-exponential curve from the literature was used [6]. In order to avoid convergence at local minima, ten starting values were used to fit 
each time course, which were randomly generated within pre-specified limits for each model parameter. For comparative purposes, Ktrans maps were created for 
each model; whilst this parameter does not normally feature in the SLL and Griebel models, it was constructed from the relationship Ktrans = (1-Hct)EFρ, assuming 
a haematocrit fraction (Hct) of 0.45 and tissue density (ρ) of 1 g ml-1; E and F are extraction and flow, respectively. 

Statistical Analysis: The probability (p) of measuring a particular χ2 value for a given number of degrees of freedom can be estimated from standard 
statistical tables or numerical algorithms. The null hypothesis of the test is that the model does not describe the data; therefore value of p > 0.01 implies that the fit 
to the data is good. For each ROI, the percentage of fits with p > 0.01 was calculated. This was repeated for each model in order to compare performance. 
Results 

Figure 1 shows example fits to two signal intensity time courses from 
colorectal tumours given by the four models. As can be seen from the left-hand 
example, all of the models are capable of providing a good fit to the data. Table 1 
shows a summary of the goodness of fit analysis of each model. Figure 2 shows 
examples of fits with p > 0.01 and p < 0.01.  

The modified Kety model was found to provide the greatest number of 
good fits, closely followed by the extended Kety model. The closeness of these 
two results was caused by vp in the extended Kety model tending to negligibly 
small values (median vp values ranged from 0.0001 to 0.003), thereby rendering 
the two models equivalent (apart for a small difference in the number of degress 
of freedom. Figure 3 shows parametric maps from an example patient, which 
reveals a close corresponandance between the Kety models and the SLL model. 
Parameters from the Griebel model are considerably scattered compared with the 
maps from the other models, implying a potentially large uncertainty in their 
values. 
Discussion and Conclusions 

In this study, the goodness of fit provided by four commonly used 
pharmacokinetic models was compared. Using the χ2 goodness of fit test with 
a signficance level p = 0.01, the modified Kety model was found to provide 
the closest characterisation of the data. These results imply that, although 
more complex, the extended Kety, SLL and Griebel models do not enhance 
the accuracy of the fit to the data. However, a literature-derived plasma 
concentration curve was used in this study, which essentially formed a 
component of each model. Further analysis of these models using measured 
measured plasma curves would be informative. However, the ability to define 
an absolute measure of goodness of fit, as described in this study, offers a 
significant methodological advancement. 
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Figure 1: Example fits to signal intensity-time courses using each 
model. 
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Figure 3: Parametric maps of Ktrans (top) and ve (bottom) from each 
model; (left to right) modified Kety, extended Kety, St. Lawrence & Lee, 
Griebel. 

 Mod. Kety Ext. Kety SLL Griebel 

Av. % of ROI 
with p>0.01 

50.9 ± 28.6 38.8 ± 31.7 21.3 ± 26.0 32.8 ± 23.7 

 
Table 1: Summary of goodness of fit analysis for each model. Uncertainties 

represent standard deviations. 

Figure 2: Example fits with (left) p>0.01 and (right) p<0.01. 
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