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Introduction: 
With kinetic modeling, DCE-MRI has the potential of allowing investigators to infer physiological parameters such as perfusion, capillary permeability and blood 
volume. Accuracy and precision in parameter estimation in terms of model selection 1, temporal sampling and injection duration 2 have been evaluated in the past but 
separately with simulated vascular input functions (VIF). Using high-temporal resolution VIF measured from healthy human volunteers, we analyzed the effects of 
different sampling rates and injection protocols on parameters estimated using three common kinetic models under various simulated physiological conditions. 
Methods: 
Dynamic Contrast-Enhanced MRI: Adult human volunteer subjects (N = 8, ages 23-59 years, weights 70-90 kg) with no known health problems were recruited under 
an Institutional Review Board-approved protocol. Brain imaging was performed at 3.0 T (Philips Intera; Philips Medical Systems; Andover, MA) using a 6-channel 
SENSE head coil. DCE-MRI (3D T1-FFE) was obtained once per second for up to 10 minutes. Contrast parameters were: TR 1.82 ms, TE 0.7 ms, α 11º, SENSE 3, 
NEX 1. Geometric parameters were: FOV 25 cm, MTX 96×68, slice thickness 7 mm, 24 slices. Ten seconds following initiation of the dynamic scan, 0.2 ml/kg Gd-
DTPA (Magnevist; Berlex; Montville, NJ) was injected intravenously by constant-rate infusion at one of two rates. Four volunteers were injected rapidly (4 ml/s for 
4.0-4.5 s) and four were injected slowly (0.3 ml/s for 60 s). Each injection was immediately followed by 0.9% normal saline flush to clear the intravenous catheter of 
contrast material.Generation of Vascular Input Function for Simulation: DCE-MRI datasets were analyzed offline on a personal workstation using routines written in 
Matlab (Mathworks; Natick, MA). Contrast concentration in plasma cp(t) was determined from signal enhancement of blood by assuming T1 of native blood 1550 ms, 
T1-relaxivity of Gd-DTPA 3.3 mM-1s-1 at 3.0 T. Measurements were obtained from voxels in the superior sagittal sinus or transverse sinus near torcular Herophili to 
avoid partial volume averaging effects with nonvascular tissue and to avoid errors from flow-related enhancement. Wiener filter was then applied to cp(t) to suppress 
imaging noise while preserving peaks and troughs from recirculation. Simulation of Tissue Response: Simulated data for contrast concentration in tissue ct(t) were 
generated from cp(t) using Model 3 3: ( ) ( ) ( ) ( ) ξξξξ τξ
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to suggest that the model fully describes true tissue physiology, but it does allow a standard to compare the various models and determine conditions in which certain 
models may yield erroneous results. Baseline parameter values (Ktrans = 0.5 min-1, ve  = 0.4, vp = 0.05, F = 1.2 min-1) were selected based on standard values used by 
others for simulating breast cancer and meningioma.1,2 With other parameter values held constant, Ktrans was varied to simulate low and high-permeability states (0.1 
min-1 and 1.1 min-1, respectively); F was adjusted to simulate low and high-flow states (0.6 min-1 and 2.0 min-1, respectively), and vp was changed to simulate a high-
vascularity state (vp = 0.15 with F = 3.6 min-1 to keep τ = 2.5 s). To limit computational error owing to insufficient temporal resolution, all data were interpolated to 0.1-
s temporal resolution using piecewise cubic Hermite polynomials prior to convolution. Subsampling: After generating 0.1-s high temporal resolution data with the 
different sets of kinetic parameters, cp(t) and ct(t) were resampled at gradually lower temporal resolutions (sampling interval Ts = 1 s, 2.5 s, 5 s, 10 s, 20 s, and 40 s). At 
each temporal resolution,10 subsampled datasets of cp(t) and ct(t) were generated using temporal jitter described by Henderson, et al.2 This was done by first offsetting 
the high temporal resolution cp(t) and ct(t) in time by a fraction (0, 0.1, 0.2, �, 0.9) of Ts prior to resampling at interval Ts starting at t = 0. Model Fitting: Parameters 
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subsampled cp(t) and ct(t) datasets by means of nonlinear least-squares curve fitting. The Nelder-Mead simplex direct search method was implemented to find parameter 
values that minimized the sum of squared residuals with the constraint that all estimated parameters must be non-negative. For each dataset, 10 trials were attempted 
with random initial parameter values. If more than one solution was found because of convergence to local minima rather than the global minimum, the solution with 
the least sum of squared residuals was selected. 
Results and Discussion: 
Vascular Input Functions for Simulation: Typical plasma contrast concentration curves for fast-injection and slow-injection protocols are shown in Fig. 1a. Graphs of 
corresponding Fourier transforms (Fig. 1b) demonstrate differences in energy distribution between the two injections. The fast-injection curve has more energy than the 
slow-injection curve in the high frequency range of 4 rad/min to 100 rad/min, which implies that the use of a fast injection should result in more precise estimates of 
parameters that are sensitive to high-frequency changes, i.e. vp, F and τ. However, effects of aliasing would also be more pronounced with a fast injection, especially if 
the sampling rate is limited. Precision in Model Fitting: With Ts = 1 s, all three models fitted the simulated data in a reliable manner. The precision of an estimated 
parameter was determined by the variability of estimated values derived from 10 subsampled datasets implementing temporal jitter. As Ts increased, the variability of 
all estimated parameters progressively increased at different relative amounts (i.e. ∆ relative variability per ∆Ts of F and τ > vp > Ktrans > ve). A model was considered 
unstable at a critical Ts if at least one of its subsampled dataset trials with temporal jitter yielded a parameter value that was zero or greater than twice its expected value. 
Fig. 2 shows that Model 3 becomes unstable if Ts approaches τ. For Model 2, the critical Ts for stability decreases with increasing permeability or decreasing flow. In 
general, use of fast injection results in slightly more precise measures in high permeability or low flow states, whereas slow injection does better in low permeability or 
high flow states. Except in the case of high permeability with fast injection, Model 1 remains stable even with Ts of 40 s. Fig. 3 shows the relative variability (bars in 
relative SD) of Ktrans, which increases in high permeability and low flow states. Accuracy in Model Fitting: As expected, Model 3 always yielded accurate parameter 
estimates since it was used to generate the simulated data. Parameter accuracy is model dependent and relatively stable at different sampling rates. Fig. 3 shows Model 
1 always overestimates Ktrans by a factor roughly proportional to vp. For Model 2, its estimated Ktrans is always between its true value and that estimated by Model 1 
(estimated Ktrans closer to the true value in low permeability or high flow states). It is interesting to note that the most accurate and precise estimate is the lumped 
parameter ve+vp (relative error ~0, relative SD < 10% even with Ts = 40s), which is steady-state ct(t)/cp(t) when contrast has equilibrated in plasma and EES. The next 
most accurate and precise estimate is kep = Ktrans/ve. Since vp is underestimated with Model 2 (related to PS/F, see Fig. 4) and not even considered by Model 1, this 
explains the source of Ktrans overestimation: underestimation of vp leads to equal overestimation of ve, which leads to overestimation of Ktrans that is proportional to kep. 
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