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Introduction: 
Using kinetic modeling, dynamic contrast-enhanced (DCE)-MRI has the potential of allowing investigators to infer physiological parameters such as perfusion, 
capillary permeability and blood volume. Accuracy and precision in parameter estimation in terms of model selection 1, noise and measurement error 2, and temporal 
sampling 3 have been evaluated in the past using computer simulations. Here, a detailed analysis covering these topics is presented using purely analytical arguments. 
Theory: 
Fourier Analysis of Linear Kinetic Models 
Various models that describe tracer kinetics as linear, time-invariant systems can be generalized to the form ( ) ( ) ( )thtctc pt ⊗= , where ( )th  is the impulse residue 
function of tissue to be estimated. Analysis is simplified by noting its Fourier pair is ( ) ( ) ( )ωωω HCC pt = , where ( )ωH  is the transfer function of tissue to be estimated. 
Since all unknown parameters to be estimated are entirely contained in the transfer function, accuracy of estimating parameters of a particular model depends on how 
well the transfer function of that model fits the true transfer function of actual tissue physiology. Three commonly used kinetic models of increasing complexity were 
chosen for analysis to illustrate conditions in which the models diverge. These are the same models compared by Buckley 1 using simulations: 
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Interpretation of physiological parameters is appreciated by graphing ( )ωH  of Models 1, 2 and 3 as log-log plots (Bode plots, Fig. 1). Corner frequencies 
e

trans
c vK=1ω , p

trans
c vK=2ω , and τπω =3c  define parameter boundaries of kinetic dominance: ev  mostly governs kinetics at frequencies 1cωω << , 

whereas transK  mostly determines kinetics at frequencies 1cωω >> . The influence of pv  is seen at all frequencies but dominate at frequencies 2cωω >> , and τ  
determines kinetics at frequencies 3cωω >> . At near-steady state 1cωω << , ( ) evH ≈ω  for Model 1, and ( ) pe vvH +≈ω  for Models 2 and 3. At high 
frequencies 2cωω >> , ( ) pvH ≈ω  for Model 2, whereas ( )ωH  of Model 3 closely approximates (but is always less than) that of Model 2. Only in the limit as 

∞→F  does ( )ωH  of Model 3 approach that of Model 2. Assuming Model 3 describes �true� tissue physiology, this explains why certain inaccuracies occur when 
Models 1 and 2 are used to estimate physiologic parameters. pv  is underestimated using Model 2 by the difference in ( )ωH  between Models 2 and 3, especially at 
frequencies 32 cc ωωω <<<< , which is related to the ratio FPS  (Fig. 2). Since pe vv +  is accurately estimated near steady state, underestimation of pv  leads to 
overestimation of ev  (which is most severe with Model 1 since pv  is not even considered in the model). As e

trans
epc vKk ==1ω  is also accurately estimated, 

overestimation of ev  leads to overestimation of transK  that is proportional to epk  (Fig. 3). 
Noise, Measurement Error and Bandwidth 
For an arbitrary function ( )ωX , we define XΩ  (bandwidth of ( )ωX ) as the maximum frequency that satisfies ( ) εωσ ≤X  for XΩ≤ω , where σ  is the upper 
bound absolute error of ( )ωX  from noise and measurement errors, and ε  is the maximum tolerated relative error of ( )ωX . If σ  is the upper bound absolute error 
of both ( )ωpC  and ( )ωtC , and we set ε  as the maximum tolerated relative error for defining their bandwidths, then we prove that CtΩ≤ω  is the frequency window 
at which the estimated ( )ωH  is reliable for estimating physiological parameters with a relative error of at most ε2 . 
Sampling Theory, Aliasing and Essential Bandwidth 
If an arbitrary function ( )tx  is sampled regularly at an interval sT , it is well known from sampling theory that aliasing occurs if ( )ωX  is non-zero for Nωω > , 
where 2sN ωω =  is the Nyquist frequency, and ss Tπω 2=  is the sampling frequency. We define XΩ  (essential bandwidth of ( )ωX  relative to 0ω ) by  
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, where 0ω≥ΩX , and 2ε  is the fraction of energy in XΩ>ω  normalized by the energy in 0ωω > . Choice of 0ω   
used to define XΩ  depends on the parameter evaluated for aliasing ( 00 =ω  for ev ; 10 cωω =  for transK ; 20 cωω =  for pv ; 30 cωω =  for τ ). By using 0ω  and 

2ε  to set the essential bandwidth of both ( )ωpC  and ( )ωtC , we prove that 22ε  is the maximum fraction of energy attributable to aliasing if NCp ω≤Ω . This can be 
used to define the minimum sampling rate Cps Ω≥ 2ω  for reliable estimation of all parameters if physiological parameters are known a priori; choice of 0ω  used to 
define CpΩ , and therefore sω , is model dependent ( e

trans
c vK== 10 ωω  for Model 1; p

trans
c vK== 20 ωω  for Model 2, and τπωω == 30 c  for Model 3). 

Application of simulated data yields results similar to that reported by Henderson, et al.3 
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