Passive Tobacco Smoke Exposure Assessed by Long-Time-Scale ³He Diffusion MRI

C. Wang¹, T. A. Altes^{2,3}, G. W. Miller², E. E. de Lange², K. Ruppert^{2,3}, J. R. Brookeman^{1,2}, J. F. Mata², G. D. Cates, Jr^{2,4}, and J. P. Mugler, HI^{1,2}

¹Biomedical Engineering, University of Virginia, Charlottesville, VA, United States, ²Radiology, University of Virginia, Charlottesville, VA, United States, ³Radiology,

Children's Hospital of Philadelphia, Philadelphia, PA, United States, ⁴Physics, University of Virginia, Charlottesville, VA, United States

Introduction: Cigarette smoking is the primary risk factor for emphysema in the developed nations; however, the effects of passive exposure to smoke on respiratory health are still under debate^[1]. Hyperpolarized (HP) ³He diffusion MRI has been used to investigate smoking-related emphysema^[2-4]. Long-time-scale apparent diffusion coefficient (ADC) measurements have been shown to be more sensitive to mild emphysematous changes than the standard short-time-scale ADC measurement ^[4]. The goal of this work was to determine whether long-time-scale ADC measurements can detect the effects second-hand tobacco smoke.

Materials and Methods: HP³He MRI was performed in twenty-two healthy subjects (10 subjects with low exposure to 2nd-hand smoke, 6 males and 4 females, age range: 47-71 yrs; and 12 subjects with high exposure to 2rd-hand smoke, 3 males and 9 females, age range: 51-79 yrs) and in three subjects with smoking-related mild emphysema (Gold Stage 0-2, 2 males and 1 female, age: 52, 61, 71 yrs) using a 1.5T commercial scanner (Sonata, Siemens). ³He was polarized to ~30% by the collisional spin-exchange technique using a commercial system (Model 9600, MITI). Global long-time-scale diffusion measurements (with diffusion sensitization in the anterior-posterior direction) were obtained for all subjects at breath hold following inhalation of 50 ml HP 3 He gas diluted with N₂ to a total volume of 1 liter. A stimulated-echo-based pulse sequence was used with the following parameters: TR, 62 ms; TE₁, 0.5 ms; TE₂, 6 ms; tag wavelength, 10 mm (G_d , 20 mT/m; δ , 0.15 ms); Δ , 48 ms; imaging flip angle, 5°. Global ADC measurements were made at diffusion times ranging from 25 ms to 6 s. To simplify comparisons between groups, only the global ADC values at a specific diffusion time, 1.54 s, are discussed below, but the findings were similar at other diffusion times. For 6 low exposure, 5 high exposure and 3 emphysema subjects, axial multi-slice ADC maps corresponding to both short (1 ms) and long (1.5 s) diffusion times were collected with 400-700 ml 3 He, diluted to ~1 liter with N₂, as described in reference 4. Spriometry was performed in all subjects immediately before imaging.

Results: For all healthy subjects combined, the global ADC was poorly correlated with age, weight and FEV₁ (%pred), and was weakly correlated with height and FVC, as shown in Table 1. Male subjects had a slightly larger global ADC (mean: 0.0229 cm²/s for males, 0.0178 cm²/s for females, p=0.03). The global ADC values at a diffusion time of 1.54 s for the subjects with high exposure to 2^{nd} -hand smoke (mean ± SD: 0.0204 ± 0.0075 cm^2/s) were more variable than those of the low exposure group (mean ± SD: 0.0193 ± 0.0032 cm²/s) as seen in Figure 1. Four of the 12 subjects with high exposure, but only 1 of the 10 subjects with low exposure, had an ADC greater than 0.0240 cm²/s (dashed line in Figure 1), while 8 high-exposure subjects and 3 low-exposure subjects had a global ADC less than 0.0185 cm²/s (solid line in Figure 1), p=0.01. All subjects with mild emphysema had a global ADC greater than 0.0290 cm²/s, which is greater than that for all healthy subjects expect for one subject with high exposure. Figure 2 shows both the long and short time scale ADC maps from the high-exposure subject whose data is circled in Fig 1. Elevation of the ADC values is observed in some regions, and is much more apparent in the long-time-scale ADC maps than in the short-time-scale ADC maps.

Discussion: Only a fraction (15-30%) of active smokers develop emphysema (structural damage to the lung) while a larger fraction develop chronic bronchitis (chronic airway inflammation). We found that subjects with high exposure to passive smoke were more likely than low-exposure subjects to have either an increased or decreased long-time-scale ADC. It is possible that a decrease in the long-time-scale ADC reflects airway narrowing, possibly from chronic inflammation, and that an increase in the ADC reflects lung structural damage or subclinical emphysema. Further, the long-time-scale ADC maps appeared to be more sensitive than the short-time-scale ADC maps to regional variations in the lung, as expected ^[3]. Our results suggest that the long-time-scale ADC measurements may be able to detect the effects of 2nd-hand smoking.

Acknowledgements: Supported by the National Heart, Lung, and Blood Institute (R01-HL066479 and R01-HL079077), Commonwealth of Virginia Technology Research Fund (IN2002-01), Flight Attendant Medical Research Institute (Clinical Innovator Award) and Siemens Medical Solutions. **References:**

1. Coultas DB. Thorax 1998; 53:381-387.

2. Fain SB, et al. Radiology 2006; 239:875-883.

3. Woods JC, et al. Magn Reson Med 2004; 51: 1002-1008.

4. Wang C, et al. Magn Reson Med 2006; 56:296-309.

variable	coefficient (r) for ADC at 1.54 s	p-value
Age	0.17	0.444
Height	0.34	0.120
Weight	0.11	0.643
FVC (L)	0.25	0.256
FEV ₁ (%pred)	-0.08	0.736

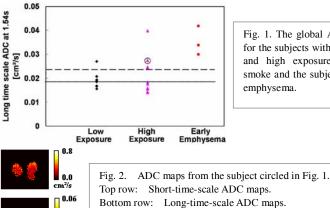


Fig. 1. The global ADC at 1.54 s for the subjects with low exposure and high exposure to 2nd-hand smoke and the subjects with early emphysema.

0.00