T1 and T2 relaxation times of human median nerve at 3 Tesla

G. Gambarota ${ }^{1}$, R. Mekle ${ }^{1}$, V. Mlynárik ${ }^{1}$, G. Krueger ${ }^{2}$, and R. Gruetter ${ }^{1,3}$
${ }^{1}$ Laboratory for functional and metabolic imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, ${ }^{2}$ Advanced Clinical Imaging Technology, Siemens Medical Solutions, Lausanne, Switzerland, ${ }^{3}$ Departments of Radiology, Universities of Lausanne and Geneva, Switzerland

Introduction

For optimized clinical MRI protocols, it is of particular importance to know the T_{1} and T_{2} relaxation times of the tissue under investigation. For most clinical relevant tissues and common field strengths T_{1} and T_{2} relaxation times of water protons are well known [1]. The T_{1} relaxation time of human peripheral nerves, however, has not been reported and the respective T_{2} relaxation time has been published only for 1.5 Tesla (in the median nerve, [2]), even though MRI of the peripheral nerves is of great clinical interest [3-5]. The purpose of this study was to investigate the water proton T_{1} and T_{2} relaxation time in human median nerve at 3 T to develop optimized clinical protocols for the investigation of the peripheral nerves [6].

Methods

All MRI experiments were performed on a clinical 3 T Tim Trio Siemens scanner using a dedicated TX/RX CP wrist coil. Gradient echo images $\left(\mathrm{TR} / \mathrm{TE}=800 / 9 \mathrm{~ms}\right.$, flip angle $\left.=45^{\circ}\right)$ were acquired for anatomical localization of the median nerve. T_{1} and T_{2} relaxation times were measured with an inversion recovery turbo spin echo (TR/TE $=6000 / 15 \mathrm{~ms}$, six inversion times $\mathrm{TI}=36,200,1000$, 2000, $4800,5800 \mathrm{~ms}$) and a multiecho CPMG (20 echoes, $\mathrm{TR} / \mathrm{TE}=3000 / 11 \mathrm{~ms}$) imaging sequence, respectively. Fat saturation was applied in both sequences. T_{1} and T_{2} were calculated within a manually segmented ROI of the median nerve by fitting the signal intensities to a monoexponential recovery and decay function, respectively.

Results

Excellent anatomical delineation of the median nerve, at the level of the wrist, was obtained in the gradient echo images (Figure 1.A; zoomed in Figure 1.B, where the median nerve is indicated by the arrow). The average relaxation times of the median nerve were T_{1} $=1410 \pm 70 \mathrm{~ms}(\mathrm{n}=3)$ and $\mathrm{T}_{2}=35.5 \pm 2.8 \mathrm{~ms}$ $(\mathrm{n}=3)$. Typical relaxation decay and recovery curves are shown in Figure 2 and 3, respectively.

 and on qualitative imaging, mostly on observing abnormal signal intensities in T_{2}-weighted imaging. On the other hand, quantitative relaxation measurements as presented here have the potential to allow longitudinal studies, providing additional information about the course of the neuropathy over time, and make comparisons between individual patients possible.

References and Acknowledgements

[1] Henriksen O et al., Magn Reson Imaging. 1993;11:851-856. [2] Chappell KE et al., AJNR Am J Neuroradiol. 2004;25:431-440. [3] Filler AG et al., J Neurosurg. 1996;85:299-309. [4] Dailey AT et al., Lancet. 1997;350:1221-1222. [5] Grant GA et al. Neuroimaging Clin N Am. 2004;14:115-133. [6] Saupe N et al.,

Discussion

Despite the great clinical potential of MRI to investigate the peripheral nervous system (PNS), only little work has been published so far [2-6]. In general, development and optimization of such a clinical MRI application requires accurate knowledge of the T_{1} and T_{2} relaxation times of the PNS. The herein measured relaxation behaviour of water protons in the median nerve (long $\mathrm{T}_{1}=1410 \mathrm{~ms}$ and short $\mathrm{T}_{2}=35 \mathrm{~ms}$ at 3 T) is consistent with the highly-oriented and densely-packed structure of the peripheral nerves, which consist of fascicles of individual fibers enclosed by connective tissue sheaths. The T_{2} measured in the current study is shorter than the value measured at 1.5 T ($\mathrm{T}_{2} \sim 50 \mathrm{~ms}$ [2]). This is in line with the expected decrease in T_{2} at higher magnetic fields for such a highlyoriented structure.
To date, the MRI assessment of peripheral Radiology. 2005;234:256-264. --- Supported by Centre d'Imagerie BioMédicale (CIBM) of the UNIL, UNIGE, HUG, CHUV, EPFL and the Leenaards and Jeantet Foundations.

