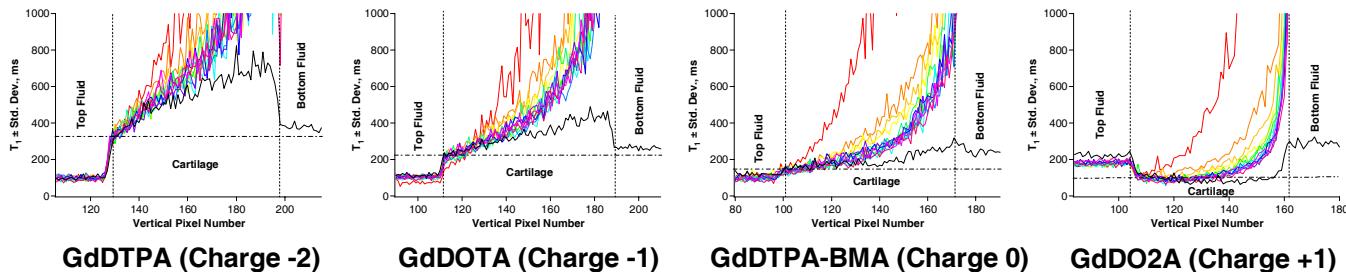


The Effect of Charge on the Uptake Kinetics and Distribution of Gadolinium Chelates in dGEMRIC Cartilage MRI

K. W. Fishbein¹, H. C. Canuto¹, and R. G. Spencer¹

¹National Institute on Aging, National Institutes of Health, Baltimore, MD, United States


Introduction:

Proteoglycans (PG's) are cartilage macromolecules which contain numerous side chains bearing sulfate and carboxyl groups that are negatively charged at physiological pH. Repulsion between these tissue-fixed charges imparts resilience to cartilage under joint loading. In the early stages of osteoarthritis, PG loss results in cartilage softening and progressive failure in joint function. dGEMRIC¹ is a contrast-enhanced T_1 -weighted MRI technique which has been used to monitor PG loss non-invasively *in vivo*. In dGEMRIC, the anionic contrast agent GdDTPA²⁻ is injected either intravenously or directly into the joint fluid and allowed to equilibrate with cartilage, ultimately achieving a tissue concentration inversely proportional to local fixed negative charge, and thus PG, concentration. Unfortunately, diffusion of GdDTPA²⁻ into cartilage is slow, so that a delay of at least 2h is typically required between injection and post-Gd MRI². This delay not only limits patient throughout but also precludes measuring cartilage and fluid T_1 's both before and after equilibration in a single MRI session, which would be highly desirable for accurate quantitation. We hypothesized that alternative Gd chelates, bearing a charge of -1 or a positive charge, could equilibrate more rapidly into cartilage than GdDTPA²⁻ while still permitting the visualization and estimation of PG concentration by T_1 -weighted MRI. We tested this hypothesis by observing the diffusion of Gd chelates of charge -2, -1, 0 and +1 into plugs of bovine nasal septum cartilage (BNC), a spatially-uniform, reproducible model for articular cartilage, via repeated acquisition of T_1 maps during equilibration in the scanner.

Methods: Cartilage samples were obtained from adjacent regions of a nasal septum harvested from a 1 year old calf. In each experiment, four plugs of diameter 7.75mm (ca. 0.18g) were excised using a corneal trephine. Each plug was inserted into a glass NMR tube with inner diameter 8.0mm filled with DPBS buffer, then the plug was pushed down to the field center height. Each plug made a close sliding fit with its tube, preventing direct liquid contact with the edges of the plug. 2 mM contrast agent solutions were prepared in DPBS by diluting stock solutions of GdDTPA²⁻ (Magnevist, Berlex Imaging), GdDOTA⁻ (Dotarem, Guerbet) and GdDTPA-BMA (neutral; Omniscan, Amersham). The novel cationic contrast agent GdDO2A⁺ (GdDOTA-bis-amide) was prepared by Macrocylics, Inc. (Dallas, TX) as the chloride salt and was dissolved directly in DPBS to give a 2mM solution. The pH of all four solutions was adjusted to 7.4 ± 0.1 . Just prior to MRI, the liquid above each plug was replaced by 4 ml of one of these four solutions. The four tubes were then placed in a homebuilt sample holder, which was inserted into a Bruker DMX400 NMR spectrometer equipped with 3-axis shielded gradients and a 30mm ^1H birdcage coil. Probe temperature was regulated at $37.0 \pm 0.1^\circ\text{C}$ using the spectrometer's variable temperature controller. Based on an initial axial pilot scan, a single, 0.5mm thick slice, parallel to the B_0 axis, was selected through the center of each plug so as to visualize the cartilage as well as the fluid lying above and below. Other MRI parameters included FOV $1.5 \times 1.5\text{cm}$ ($V \times H$), MTX 256x128, SW=50 kHz, TE =12.8 ms and NEX=2. T_1 maps were generated using a spin-echo sequence with TR varying between 1.6s and 0.09s in 12 steps. T_1 maps were acquired repeatedly during gadolinium equilibration in order to compare the rates of diffusion of each chelate into cartilage. For each slice in each scan, an 11 pixel-wide band was defined perpendicular to a flat region of the plug and pixels in each row were averaged and subjected to a 3-parameter fit versus TR to give a plot of T_1 versus vertical position.

Results and Discussion:

Below, T_1 profiles are shown in temporal order from red (1.5 h post-Gd) to violet (18 h) and black (14 days). Since PG concentration in BNC is assumed to be independent of depth, complete equilibration would be indicated by constant T_1 within the cartilage and equal T_1 in the fluid above and below. We observed the least and most complete equilibration at any given time with GdDTPA²⁻ and GdDO2A⁺, respectively. Moreover, GdDO2A gave cartilage-fluid T_1 contrast at least as pronounced as GdDOTA-, suggesting that the new, cationic chelate may be well-suited for fast dGEMRIC measurements.

Acknowledgements: The authors wish to thank A. Dean Sherry and Shanrong Zhang for providing the GdDO2A. GdDOTA was obtained through a NIH Material Transfer Agreement from Guerbet, S.A.

References: 1. Bashir A et al, Magn Reson Med 36:665-73 (1996); 2. Burstein D et al, Magn Reson Med 45:36-41 (2001)