Depolarizing hyperkalemic arrest reduces Mn²⁺-induced MRI signal enhancement in pig hearts

V. V. Kupriyanov^{1,2}, Y. Yang², J. Sun¹, and M. L. Gruwel¹

¹Institute for Biodiagnostics, Winnipeg, Manitoba, Canada, ²University of Manitoba, Winnipeg, Manitoba, Canada

Aim: To assess whether sarcolemma depolarization affects MRI contrast enhancement by MnCl₂ in pig hearts.

Background: Mn^{2+} is an intracellular type contrast agent, uptake of which is mediated by Ca^{2+} channels [1]. Therefore sarcolemmal depolarization that inactivates Ca^{2+} channels and reduces the driving force for cation influx should affect Mn^{2+} accumulation and contrast development.

Methods: 1. *Animal model.* In domestic pigs weighing 25-35 kg (n = 22) 1st and 2nd diagonal branches of the left anterior descending coronary artery (LAD) were acutely or chronically (3, 7 & 14 days) ligated. The hearts were excised and perfused *ex vivo* with 50:50 mixture of blood and Krebs-Henseleit buffer at constant flow. Five hearts were arrested by increasing [K⁺] from 4.7 to 16 mM. Cardiac function was recorded via the LV balloon. 2. *MRI. Ex vivo* experiments were performed on a 7T magnet, interfaced to a Bruker Biospec console using spin-echo multislice sequence (FOV of 16x16 cm², TE = 8 ms, data matrix a 128x128 points). The heart and 2 reference test tubes containing H₂O and H₂O + 10 mM CuSO₄ were placed into the perfusion chamber within the birdcage coil. For beating hearts the signal acquisition was gated by the LV dP/dt (TR=800 ms). Six 8-mm thick slices separated by 2 mm were obtained. Following the baseline image, 0.2 mM MnCl₂ was added and serial images were taken every 5 min over a 20-min period. Signal intensities in normal areas for each slice were normalized to those of the H₂O reference.

Results: In beating hearts intensities increments (ΔI) in normal areas were greater than those in arrested hearts after 15-20 min Mn²⁺ loading (Figure & Table). Time courses of ΔI were fitted to an exponential function: $\Delta I = \Delta I_{max}[1-exp(-t/t1)]$. The rates of ΔI rise ($\Delta I_{max}/t1$) and maximal increments (ΔI_{max}) were significantly lower during KCl arrest whereas t1 values did not differ (Table). In ischemic/infarcted areas, intensity increases were much smaller and were not significantly affected by KCl arrest.

Conclusions: Inhibition of Mn^{2+} enhancement development by KCl arrest implies that sarcolemmal depolarization inhibits Mn^{2+} uptake by normal myocytes.

<u>Group (n)</u>					
-	$\Delta I(15-20)$	ΔI_{max} , %	t1, min	$\Delta I_{max}/t1$, %/min	R^2
Beating (17)	103±26	111±2.2	6.6±0.35	16.8±0.9	0.999
KCl-arrested (5)	67±23	67±6.9	5.2 ± 1.44	12.9±3.57	0.98
р	0.0003	<0.05		<0.05	

Reference: 1. Wendl	and MF.	INIVIK .	вютеа.	17:381-394:2004	ł.
----------------------------	---------	----------	--------	-----------------	----

Proc. Intl. Soc. Mag. Reson. Med. 15 (2007)